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IntrodutionKazhdan-Lusztig theory lies in the intersetion of di�erent researh areas ofmodern mathematis suh as representation theory, algebrai geometry, Vermamodule theory, and ombinatoris. In this thesis we takle the subjet from aombinatorial point of view, stressing its links with the ombinatoris of words,the theory of posets, and the theory of mathings of posets.Kazhdan-Lusztig theory originated in the paper [40℄ by D. Kazhdan and G.Lusztig of 1979. In this seminal paper, the authors introdued a new family ofrepresentations of the Heke algebra, whih is a sort of deformation of the groupalgebra of the Coxeter group. The Heke algebra and its representations relate totwo families of polynomials with integer oe�ients, indexed by pairs of elementsin the Coxeter group, now ommonly referred to as the family fRu;v(q)gu;v2W ofR-polynomials and the family fPu;v(q)gu;v2W of Kazhdan-Lusztig polynomials.These two families are stritly onneted together (and are atually in somesense equivalent), and are related to the Bruhat order of the underlying Coxetergroup.After [40℄, whih has beome a turning point in Coxeter group theory, alarge number of mathematiians started studying these subjets and their re-lated topis. Kazhdan-Lusztig polynomials have been proven to have severalappliations in di�erent ontexts. We do not want here to make a list of theseappliations and we refer the interested reader to [3℄, [29℄, [36℄, [40℄, [41℄. Wejust want to brie�y reall the two following onnetions with Heke algebrasand Shubert varieties, whih are of onern to us. The Kazhdan-Lusztig rep-resentations of the Heke algebra introdued in [40℄ are based on ertain graphs(alled W -graphs in [40℄). The main ingredients for the onstrution of ertainW -graphs are the top oe�ients of the Kazhdan-Lusztig polynomials of thegroup. This is the main reason why the funtion � is important. As to therole of Kazhdan-Lusztig polynomials in the geometry of Shubert varieties, it is5



6 Introdutionknown that, for Weyl and a�ne Weyl groups, their oe�ients are a measure ofthe singularities of the orresponding Shubert varieties. They atually ountthe dimensions of the loal intersetion homology spaes of these varieties at apoint lying in a given Shubert ell.One these appliations of Kazhdan-Lusztig polynomials had been found,there followed the problem of omputing them. The main tools are fairly om-pliated reursive formulae already appearing in [40℄. In the past twenty years,many mathematiians have tried to dedue non reursive losed formulae, atleast for small lasses of elements in partiular Coxeter groups (mainly in thesymmetri group). For expliit desriptions of some families of Kazhdan-Lusztigpolynomials we refer to the works of Billey and Warrington [4℄, Brenti andSimion [19℄, Boe [8℄, Lasoux and Sh�utzenberger [45℄, Shapiro, Shapiro andVainshtein [53℄.The reurrene satis�ed by the Kazhdan-Lusztig polynomial Pu;v(q) dependson the desents of u and v, on the Kazhdan-Lusztig polynomials Px;y(q) for allx; y in the interval [u; v℄, and on [u; v℄ as a partially order set under the Bruhatorder. One of the most famous onjetures of Kazhdan-Lusztig theory is dueto Lusztig and states that the Kazhdan-Lusztig polynomial Pu;v(q) atuallydepends only on the isomorphism type of the interval [u; v℄ as a poset. Asustomary, we refer to this onjeture as the onjeture of the ombinatorialinvariane of Kazhdan-Lusztig polynomials. In a very reent paper [17℄, Brentihas proved the ombinatorial invariane of Kazhdan-Lusztig polynomials in thease of the symmetri group S(n) for lower Bruhat intervals. More preisely, hehas proved that the Kazhdan-Lusztig polynomial indexed by the permutationsu and v atually depends only on the isomorphism type of the interval [e; v℄,where e is the identity element of S(n).This thesis ontains most of the results I have obtained in Kazhdan-Lusztigtheory under the aurate and always enouraging diretion of Prof. F. Brenti.It is divided into two distint parts.The �rst part, omprising Chapters 1-3, is the result of the work I have doneafter having proved a onjetures by Brenti regarding ertain expliit formulaefor R-polynomials of the symmetri group. I realized that this proof works ina more general setting and the Boolean elements naturally ame out (for thede�nition, see Setion 1.1). Hene I tried to develop the theory for this lassof elements with partiular regard to expliit losed formulae. In partiular,



7here I ompute the R-polynomials of any Coxeter group, the Kazhdan-Lusztigpolynomials of a linear Coxeter group (see Setion 0.4 for the de�nition), andthe paraboli Kazhdan-Lusztig and R-polynomials of the symmetri group. Allthis formulae are easily stated in terms of ertain tableaux assoiated to pairsof Boolean elements.These formulae, moreover, turn out to have several onsequenes. They allow usto expliitly list all the pairs (u; v) of Boolean elements with �(u; v) 6= 0, to om-pute and fatorize the Kazhdan-Lusztig elements indexed by Boolean elements,to ompute and fatorize the intersetion homology Poinaré polynomials in-dexed by Boolean elements, to prove Lusztig's onjeture of the ombinatorialinvariane for Boolean elements. In all these results, (W;S) an be any linearCoxeter system exept in the last one, where (W;S) is supposed to be stritlylinear.The seond part, omprising Chapters 5-7, is the result of a pleasant andfruitful ollaboration with Franeso Brenti and Fabrizio Caselli, whih is stillongoing. This ooperation started while trying to give a solution to Lusztig'sonjeture on the ombinatorial invariane of Kazhdan-Lusztig polynomials.The main result of Part II is ertainly the following, whih prove Lusztig'sonjeture for lower Bruhat intervals in any Coxeter system.Theorem. Let (W;S) and (W 0; S0) be two Coxeter systems, w 2 W , w0 2 W 0,and let e and e0 be the identities of W and W 0, respetively. Suppose that�: [e; w℄! [e0; w0℄ is an isomorphism of partially ordered sets (under the Bruhatorder). Then, for all u; v 2 W , u; v � w, the Kazhdan-Lusztig polynomial Pu;vis equal to the Kazhdan-Lusztig polynomial P�(u);�(v).The proof of this theorem uses the fundamental onept of speial mathings ofa partially ordered set, whih are, by de�nition, ombinatorial invariant. Theruial point is to prove that any speial mathing of [e; v℄ leads to a poset theo-retial way for omputing the Kazhdan-Lusztig polynomials Pu;v for all elementsu � v. This result has many onsequenes. In partiular we show several om-binatorial formulae for both R-polynomials and Kazhdan-Lusztig polynomialswhih depend on lassial ombinatorial objets suh as sub-sequenes, pathsin a label graph, ompositions and lattie paths. This is done by introduingthree families of sequenes of speial mathings whih are all new ombinatorialanalogues of the onept of redued expression.



8 IntrodutionThe following is the plan of this thesis.Part I is organized around the lass of Boolean elements.In Chapter 1 we introdue the Boolean elements and we give the preliminarylemmas that make the ombinatoris of these elements easier.In Chapter 2, we study the Kazhdan-Lusztig and R-polynomials indexed byBoolean elements. In partiular, in Setion 1 and in Setion 2, we give losedprodut formulae for the R-polynomials of any Coxeter group and for theKazhdan-Lusztig polynomials of any linear Coxeter group. As a onsequene ofthese formulae, in Setion 3 we prove Lusztig's onjeture of the ombinatorialinvariane for Boolean elements in stritly linear Coxeter systems. In Setion 4,we expliitly list all the pairs (u; v) of Boolean elements with �(u; v) 6= 0. Thisresult an be useful also for the omputation of other lasses of Kazhdan-Lusztigpolynomials sine the funtion � is often the main obstale in their reursiveomputation (see, for example, [23, 24℄). In Setion 5 and in Setion 6 weompute and fatorize respetively the Kazhdan-Lusztig elements and the in-tersetion homology Poinaré polynomials indexed by Boolean elements.In Chapter 3, we ompute the paraboli analogues of the Kazhdan-Lusztig andR-polynomials for the symmetri group in the ase when the indexing permuta-tions are Boolean. These formulae are valid with no restritions on the parabolisubgroupWJ and depend on the number of ourrenes of ertain sub-tableauxin a �xed tableau assoiated to the indexing permutations.Part II is organized around the appliations of the onept of speial math-ing in Kazhdan-Lusztig theory.Chapter 4 is devoted to the proof of Lusztig's onjeture on the ombinatorialinvariane of Kazhdan-Lusztig polynomials for lower intervals, that is for in-tervals of the form [e; v℄ for any element v in any Coxeter group. We start bygiving some ombinatorial properties of Bruhat order in Setion 1 and by ex-amining the ombinatoris of pairs of speial mathings in Setion 2. After this,we takle the problem of the ombinatorial invariane. First, in Setion 3, weprove the onjeture for lower Bruhat intervals in Coxeter groups of rank 3 andthen from this, in Setion 4, we dedue the result for all Coxeter groups. Thisfollows by proving that speial mathings lead to a poset theoreti reursionfor omputing R-polynomials (Corollary 4.4.8). Finally, in Setion 5, for eahv 2 W , we introdue and study a ombinatorial version of the Heke algebranaturally assoiated to the speial mathings of [e; v℄ and an ation of it on thesubmodule of the lassial Heke algebra of W spanned by fTu : u � vg. This



9ation enables us to reformulate Corollary 4.4.8 in a very ompat way by sayingthat this ation �respets� the anonial involutions � of these Heke algebras.This, in turn, implies that the usual reursion for Kazhdan-Lusztig polynomialsholds also when desents are replaed by speial mathings thus giving a posettheoreti reursion for the Kazhdan-Lusztig polynomials whih does not involvethe R-polynomials.In Chapter 5, we introdue three families of sequenes of speial mathings: theregular sequenes, the B-regular sequenes, and the R-regular sequenes. Allof them are new ombinatorial analogues of the onept of redued expression.Using these sequenes, we generalize some formulae valid for Kazhdan-Lusztigand R-polynomials of any Coxeter system. In partiular, in Setion 1 we gen-eralize an algorithm and a losed formula of Deodhar ([28, Algorithm 4.11℄ and[26, Theorem 1.3℄) for Kazhdan-Lusztig and R-polynomials, respetively. InSetion 2 we obtain a bijetion between subsequenes of B-regular sequenesand ertain paths in an appropriate direted graph. This bijetion has severalnie properties, and transforms the onepts and statistis used in the previoussetion into familiar ones on paths. In Setion 3 we generalize to a ombinato-rially invariant setting what is probably the most expliit non-reursive formulaknown for Kazhdan-Lusztig polynomials whih holds in omplete generality,namely Theorem 7.3 of [14℄.In Chapter 6, we study the set of all speial mathings Sv of a permutation v.We show that the group Wv generated by the speial mathings of Sv, whihare involutions, is atually a Coxeter group, with Sv as set of Coxeter genera-tors. The Coxeter system (Wv ; Sv) is always isomorphi to a diret produt ofsymmetri groups.Finally, Chapter 7 deals with the problem of generalizing the de�nition ofKazhdan-Lusztig and R-polynomials to arbitrary posets. We prove that, ina ertain lass of posets, the onept of speial mathing leads to an entirelyposet theoreti de�nition of Kazhdan-Lusztig and R-polynomials. This lass ofposets, whih we all diamonds, inludes the lower Bruhat intervals and the newde�nitions are obviously onsistent with the lassial de�nitions.Chapter 0 is not meant to be an introdution either to Coxeter group theoryor to Kazhdan-Lusztig theory. It just reviews the bakground material that isbeing used in both Part I and Part II, and ollets some already known resultsfor later referene. Rarely, some external referenes were neessary in Part II,but we have tried to minimize reliane on other soures. We refer to [39℄ and [9℄for a detailed treatment of the subjet.
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Chapter 0
Notation and BakgroundThis hapter reviews the bakground material on posets, Coxeter systems andKazhdan-Lusztig theory that is needed in the rest of this work.0.1 NotationWe ollet here some notation that will be adhered to in the sequel.Z = ring of integer;P = set of positive integer;N = set of non-negative integer;Q = �eld of rational numbers;C = �eld of omplex numbers;jSj = ardinality of S, for any set S;[a; b℄ = fn 2 P : a � n � bg; for a; b 2 N;[n℄ = [1; n℄; for n 2 N ;R[q℄ = ring of polynomials with oe�ients in R for R = N; Z; Q; C ;[qi℄P = the oe�ient of qi in P for i 2 N, P 2 R[q℄;We write � :=� if we are de�ning the left hand side by the right hand side.11



12 Chapter 0. Notation and BakgroundFor a proposition P we let�(P ) := ( 1; if P is true;0; otherwise:If a1; : : : ; ak 2 Z, we write S = fa1; : : : ; akg< to mean that S = fa1; : : : ; akgand a1 < � � � < ak.For n 2 P, we denote by S(n) the group of all bijetions � : [n℄ ! [n℄(the symmetri group). If � 2 S(n) then we write � = �1 : : : �n to meanthat �(i) = �i, for i = 1; : : : ; n. We will also write � in disjoint yle form(see, e.g., [55℄, p.17) and we will usually omit writing the 1-yles of �. Forexample, if � = 365492187 then we also write � = (9; 7; 1; 3; 5)(2; 6). Given�; � 2 S(n) we let �� = � Æ � (omposition of funtions) so that, for example,(1; 2)(2; 3) = (1; 2; 3).0.2 PosetsA partially ordered set (P;�), or poset for short, onsists of a set P togetherwith a partial order relation ���. The relation is suppressed from the notationwhen it is lear from ontext. A subset R of P has a struture of a poset withthe order relation indued by P . An element x 2 P is maximal (respetivelyminimal) if there is no element y 2 P nfxg suh that x � y (respetively y � x) .We say that P has a bottom element b0 if there exists an element b0 2 P satisfyingb0 � x for all x 2 P . Similarly, P has a top element b1 if there exists an elementb1 2 P satisfying x � b1 for all x 2 P . If both b0 and b1 exist, then P is bounded.Two elements x; y 2 P are said to be omparable if either x � y or y � x,and inomparable otherwise. We say that P is onneted if there do not existtwo non-void subsets of P suh that any element of the �rst is inomparablewith any element of the seond. We also write y � x to mean x � y, x < yto mean x � y and x 6= y, and y > x to mean x < y. If x � y we de�nethe (losed) interval [x; y℄ = fz 2 P : x � z � yg and the open interval(x; y) = fz 2 P : x < z < yg. If every interval of P is �nite, then P is alled aloally �nite poset. We say that y overs x, or x is overed by y, if x < y and[x; y℄ = fx; yg, and we write xC y as well as yBx. If P has a 0̂ then an elementx 2 P is an atom of P if 0̂C x. Similarly, if P has a 1̂ then an element x 2 P isa oatom of P if xC 1̂.



0.2 Posets 13The standard way of depiting a �nite poset P is to draw its Hasse diagram.This is the graph with P as node set and having an upward-direted edge fromx to y if and only if xCy (so y is drawn �above� x). The Hasse diagram gives allthe order relations by transitivity and it is learly minimal with this property.A sequene C = (x0; x1; : : : ; xh) of elements in P is alled a hain (respe-tively multihain) if x0 < x1 < : : : < xh (respetively, x0 � x1 � : : : � xh).We then also say that C starts with x0 and ends with xh. The integer h isthe length of C and it is denoted by l(C). The length of a �nite poset P isl(P ) := maxfl(C) : C is a hain of Pg. A hain is maximal if its elements arenot a proper subset of those of any other hain. A hain is saturated if allsuessive relations are overings: in this ase we write x0 C x1 C � � �C xh.A morphism of posets is a map � : P ! Q from the poset P to the posetQ whih is order-preserving , namely suh that x � y in P implies �(x) � �(y)in Q, for all x; y 2 P . If instead x � y implies �(x) � �(y), the map is order-reversing. Two posets P and Q are isomorphi if there exists an order-preservingbijetion � : P ! Q whose inverse is also order-preserving. In this ase � is anisomorphism of posets. An isomorphism of posets � : P ! P is also alled anautomorphism. If, instead, � : P ! P is a bijetion suh that � and ��1 areorder-reversing, then � is alled an anti-automorphism. A poset P is a Booleanalgebra if there is a set S suh that P is isomorphi to the set of all subsets ofS, partially ordered by inlusion.A poset P is ranked if there exists a (rank) funtion � : P ! N suh that�(y) = �(x) + 1 whenever x C y. A poset P is pure of length n if all maximalhains are of the same length n. A poset P with bottom element b0 is graded ifevery interval [b0; x℄, x 2 P , is pure. Suppose that P is either pure or graded.De�ne the rank �(x) of x 2 P to be the length of the subposet fy 2 P : y � xg.This gives P a struture of ranked poset.The Möbius funtion of P assigns to eah ordered pair x � y an integer�(x; y) aording to the following reursion:�(x; y) = ( 1; if x = y,�Px�z<y �(x; z); if x < y. (1)We say that a �nite graded bounded poset P , with rank funtion �, is Eulerianif �(u; v) = (�1)�(v)��(u) for all u; v 2 P , u � v. Equivalently, P is Eulerian if



14 Chapter 0. Notation and Bakgroundand only if jfp 2 [u; v℄ : �(p) is evengj = jfp 2 [u; v℄ : �(p) is oddgjfor all u; v 2 P , u � v.Let Int(P ) := f(x; y) 2 P 2 : x � yg. Given a ommutative ring R, theinidene algebra I(P ;R) of P with oe�ients in R is the set of all funtionsf : Int(P )! R with sum and produt de�ned by(f + g)(x; y) := f(x; y) + g(x; y)and (fg)(x; y) := Xx�z�y f(x; z) g(z; y); (2)for all f; g 2 I(P ;R) and (x; y) 2 Int(P ). The inident algebra I(P ;R) is anassoiative algebra having, as identity, the funtion Æ de�ned byÆ(x; y) := ( 1 if x = y,0 otherwise.An element f 2 I(P ;R) is invertible if and only if f(x; x) is invertible for allx 2 P . If f is invertible then we denote by f�1 its (two-sided) inverse.0.3 Coxeter systemsLet S = fs1; : : : ; srg be a �nite set of ardinality r. A Coxeter matrix is amatrix m : S � S ! f1; 2; : : : ;1g suh that1. m(si; sj) = m(sj ; si);2. m(si; sj) = 1 () i = j.for all i; j 2 [r℄.Any Coxeter matrix uniquely determines a group W given by the presentation:- generators: S;- relations: (sisj)m(si;sj) for all i; j 2 [r℄ with m(si; sj) 6=1.If a group W has suh a presentation, then W is a Coxeter group, the pair(W;S) is a Coxeter system, and S is a set of Coxeter generators. The ardinality



0.3 Coxeter systems 15jSj = r of S is usually alled the rank of W . Given two Coxeter systems (W;S)and (W 0; S0), a map � :W ! W 0 is an isomorphism of Coxeter systems if it isan isomorphism of groups and �(S) = S0. The isomorphism type of a Coxetersystem (W;S) is not determined by the isomorphism type of the groupW alone.Nevertheless, it is very ommon to talk about Coxeter groups while having inmind Coxeter systems.The Coxeter matrix m of a Coxeter system (W;S) is enoded in its Coxetergraph. This is the labeled graph obtained in the following way: take S =fs1; : : : ; srg as the set of verties, then join a pair of verties fsi; sjg by an edgeif and only if m(si; sj) � 3 and label suh an edge by m(si; sj) (labels equal to3 are usually omitted).By property 2 of the de�nition of Coxeter matrix, all generators are involutions.Hene any element w 2 W an be written as a produt of generators (withoutusing inverses) w = si1 � � � sit ; sij 2 S:If t is minimal among all suh expression of w, then t is the length of w and itis denoted by l(w). Any expression of w whih is a produt of l(w) elements ofS is alled a redued expression of w. There is only one element of length zero,the identity, whih we denote by e.For all u; v 2W , we letDL(u) := fs 2 S : l(su) < l(u)g;DR(u) := fs 2 S : l(us) < l(u)g;T (W ) := fwsw�1 : s 2 S;w 2Wg; (the set of re�etions of W ):The elements of S are also alled simple re�etions. We write only T instead ofT (W ) when no onfusion arises.The proof of the following fundamental result an be found in [39℄ �5.8.Theorem 0.3.1 (Exhange Property) Let w 2 W , s1; s2; : : : ; sr 2 S, w =s1s2 : : : sr where this expression is redued. Let t 2 T (W ) be suh that l(wt) <l(w). Then there exists a unique i 2 [r℄ suh that wt = s1s2 : : : bsi : : : sr (wherebsi means that si has been omitted). In partiular, if t 2 S, this i 2 [r℄ is suhthat si+1si+2 : : : srs is redued while sisi+1 : : : srs is not.



16 Chapter 0. Notation and BakgroundFor the reader's onveniene, we just reord the following easy onsequene ofthe Exhange Property.Proposition 0.3.2 Given a Coxeter system (W;S), let u 2 W . If s 2 DL(u),then there exists a redued expression s1 � � � sr of u suh that s1 = s. Dually, ifs 2 DR(u), then there exists a redued expression s1 � � � sr of u suh that sr = s.We will always assume that W is partially ordered by (strong) Bruhat order(denoted by �), that we de�ne through the following Theorem-De�nition. Bya subword of a word s1s2 � � � sn we mean a word of the form si1si2 � � � sir , where1 � i1 < 12 < � � � < ir � n:Theorem 0.3.3 Let u; v 2W . Then the following are equivalent:1. u � v in the Bruhat order;2. there exist t1; : : : ; tr 2 T (W ) suh that tr : : : t1u = v and l(ti : : : t1u) >l(ti�1 : : : t1u) for i = 1; : : : ; r;3. there exist t1; : : : ; tr 2 T (W ) suh that ut1 : : : tr = v and l(ut1 : : : ti) >l(ut1 : : : ti�1) for i = 1; : : : ; r;4. for any redued expression of v there exists a redued expression of u whihis a subword of it;5. for every redued expression of v there exists a redued expression of uwhih is a subword of it.The Bruhat order gives W the struture of a graded poset, with length as rankfuntion. If u � v we let l(u; v) := l(v) � l(u). As for every ranked poset, wewrite uC v if u � v and l(u; v) = 1. Given u; v 2 W we let [u; v℄W := fx 2W :u � x � vg and we write [u; v℄ when no onfusion arises. We onsider [u; v℄ asa poset with the partial ordering indued by W . It is well known (see, e.g., [6℄,Corollary 1) that intervals of W (and their duals) are Eulerian posets. Hene,in partiular, if l(u; v) � 2 then all intervals [u; v℄ have ardinality equal to 4.The Bruhat graph of W is the following direted graph. Take W as vertexset. For u; v 2 W , put an arrow u! v from u to v if and only if l(u) < l(v) andut = v (equivalently tu = v) for some re�etion t. Clearly u < v if and only ifthere exists a hain u! u1 ! u2 ! � � � ! uk = v.The following Lemma is usually referred to as the Lifting Lemma (see [39℄,Lemma 7.4 for a proof).



0.3 Coxeter systems 17Lemma 0.3.4 (Lifting Lemma) Let s 2 S and u; v 2W , u � v. Then1. if s 2 DR(v) and s 2 DR(u) then us � vs;2. if s =2 DR(v) and s =2 DR(u) then us � vs;3. if s 2 DR(v) and s =2 DR(u) then us � v and u � vs.We now reall some results due to J. Tits [60℄. Given s; t 2 S suh thatm(s; t) <1, let �s;t = stst : : :| {z }m(s;t) , with exatly m(s; t) letters.Lemma 0.3.5 Let w 2 W and s; t 2 DL(w). Then there exists a reduedexpression of w whih starts with �s;t, that isv = �s;tv0;with l(v) = m(s; t) + l(v0).Dually, if s; t 2 DR(w), then there exists a redued expression of w whih endswith �s;t.Two expressions are said to be linked by a braid move (respetively a nil move)if it is possible to obtain the �rst from the seond by hanging a fator �s;t toa fator �t;s (respetively by deleting a fator ss).Theorem 0.3.6 (Tits' Word Theorem) Let u 2W . Then:1. any two redued expressions of u are linked by a �nite sequene of braidmoves;2. any expression of u (not neessarily redued) is linked to any redued ex-pression of u by a �nite sequene of braid and nil moves.Let J � S. The subgroup ofW generated by the set J is alled the parabolisubgroup generated by J , and it is denoted by WJ . The pair (WJ ; J) itself isa Coxeter system with the relations indued by (W;S). We denote by W J theset of minimal length representatives for the right osets:W J = fw 2W : DL(w) � S n Jg:



18 Chapter 0. Notation and BakgroundWe have the following deomposition.Theorem 0.3.7 Multipliation gives a bijetion WJ �W J ! W . That is, forall w 2 W , there exist unique wJ 2 WJ and wJ 2 W J suh thatw = wJ wJ :Furthermore, these elements satisfyl(w) = l(wJ) + l(wJ ):Note that W ; = W . If WJ is �nite then we denote by wJ0 its longest element.Given u; v 2W J , we let[u; v℄J = fz 2W J : u � z � vg;and onsider W J and [u; v℄J as posets with the partial ordering indued by W .We refer the reader to [9℄ or to [39℄ for a more detailed treatment of theargument.0.4 Symmetri groups and linear Coxeter groupsThe most important Coxeter group is ertainly the symmetri group S(n), thatis the group of all permutations of the set [n℄.Consider a set S of ardinality n � 1, say S = fs1; s2; : : : ; sn�1g, and onsiderthe Coxeter matrix m given by:m(si; sj) = 8><>: 1; if ji� jj = 0,3; if ji� jj = 1,2; if ji� jj > 1,for all i; j 2 [n�1℄. CallW the Coxeter group assoiated to the Coxeter matrixm. We obtain a group isomorphism from W to S(n) identifying si with thetransposition (i; i+1) for all i 2 [n℄, and extending multipliatively. This is notthe unique isomorphism and, as usual, we abuse notation by referring to theCoxeter system (W;S) simply by S(n). In the sequel, we write both si and ifor the transposition (i; i+ 1).The Coxeter system (S(n); S) has rank n� 1 and its Coxeter graph is



0.4 Symmetri groups and linear Coxeter groups 19
s1 s2 sn� � �d d d d dMany of the onepts we have given in general Coxeter group theory an bereformulated in a simpler form for the symmetri group S(n). In partiular,we will need the following useful haraterization of the Bruhat order (see, e.g.,[47℄, Chap.1, for a proof). For � 2 S(n), and i 2 [n℄, we letf�i;1; : : : ; �i;ig< := f�(1); : : : ; �(i)g :Theorem 0.4.1 Let �; � 2 S(n). Then � � � if and only if �i;j � � i;j for all1 � j � i � n� 1.As in [49℄, we all an irreduible Coxeter system linear if it has Coxetergraph with no branh points, that is if it is isomorphi, for a ertain n, to aCoxeter system (W;S = fs1; : : : ; sng) with:( m(si; sj) � 3; if ji� jj = 1;m(si; sj) = 2; if 1 < ji� jj < n� 1:(stritly linear if also m(s1; sn) = 2, non-stritly otherwise). These are theCoxeter graphs assoiated respetively to a stritly and to a non-stritly linearCoxeter system: s1 s2 snm1;2 m2;3 mn�1;n� � �d d d d d
s1 s2 sn�1snm1;2 m2;3mn;1 mn�1;n� � �d d d d dd�������� HHHHHHHHwhere there is no restrition on the labels mi;j := m(si; sj). This lass not onlyinludes the symmetri groups, but also many of the lassial Coxeter groups



20 Chapter 0. Notation and Bakgroundsuh as those of type B, F , H , ~C , I(m) (whih are stritly linear) and thoseof type ~A (whih are non-stritly linear). See [39℄ for a omplete desription oflassial Coxeter groups.0.5 Kazhdan-Lusztig theoryIn this setion we introdue the basi elements of Kazhdan-Lusztig theory. Allde�nitions and results appearing here are due to Kazhdan and Lusztig and theirproofs an be found in [40℄ or [39, Chapter 7℄.Kazhdan-Lusztig polynomials were originally introdued in terms of theHeke algebra ([40℄). Let (W;S) be any Coxeter system. The Heke AlgebraH of W over the ring of Laurent polynomials Z[q 12 ; q� 12 ℄ is the free Z[q 12 ; q� 12 ℄-module H := Mw2W Z[q 12 ; q� 12 ℄Twwith basis fTw : w 2Wg and multipliation de�ned by:TsTw := ( Tsw; if s =2 DL(v),(q � 1)Tw + qTsw; if s 2 DL(v), (3)for all w 2W and s 2 S. Every element Tw of the anonial basis of H is invert-ible; as l(w) inreases, however, the expression of the inverse gets more and moreompliated and this is the reason why the family fRu;v(q)g of R-polynomialswas de�ned, essentially as its oordinates with respet to the anonial basis ofH. More preisely, we have the following result.Proposition 0.5.1 There exists a unique family fRu;w(q)gu;w2W � Z[q℄ ofpolynomials satisfying(Tw�1)�1 = (�1)l(w)q�l(w) Xu�w(�1)l(u)Ru;w(q)Tu;for all w 2W .The polynomials Ru;v whih have been de�ned by the previous proposition arealled the R-polynomials of W . It is easy to see that deg(Ru;v) = l(u; v) ifu � v, and that Ru;v(q) = 1 if u = v, for all u; v 2 W . It is ustomary to letRu;v(q) := 0 if u 6� v. We then have the following result that follows from (3)and Proposition 0.5.1 (see [39, �7.5℄).



0.5 Kazhdan-Lusztig theory 21Theorem 0.5.2 Let u; v 2W and s 2 DL(v). ThenRu;v(q) = ( Rsu;sv(q); if s 2 DL(u),qRsu;sv(q) + (q � 1)Ru;sv; if s 62 DL(u). (4)Note that the preeding theorem an be used to indutively ompute the R-polynomials sine l(vs) < l(v). There is also a right version of Theorem 0.5.2.It is sometimes onvenient to use a related family of polynomials with non-negative integer oe�ients, alled the eR-polynomials. For u; v 2 W we leteRu;v(q) be the unique polynomial suh thatRu;v(q) = q l(u;v)2 eRu;v(q 12 � q� 12 ): (5)It is not di�ult to verify that this ondition determines a moni polynomial~Ru;v(q) 2 N[q℄ of degree l(u; v), satisfying the following reurrene relation,whih is a onsequene of Theorem 0.5.2.Corollary 0.5.3 Let u; v 2 W . Then eRu;v(q) = 0 if u � v and eRu;v(q) = 1 ifu = v. If u < v and s 2 DL(v) theneRu;v(q) = eRsu;sv(q) + �(suB u) q eRu;sv(q):Now we introdue a fundamental involution on H. De�ne �(q 12 ) = q� 12 and�(Tw) = (Tw�1)�1 and ombine these assignments to obtain a ring automor-phism � : H ! H, whih is learly an involution. Now we look for a speialbasis of H, again indexed by W , onsisting of elements �xed by �. One mayeasily hek that the elementsC 0s := q� 12 (Ts + Te)are �xed by �. These are the �rst elements of the basis we are looking for.Theorem 0.5.4 There exists a unique basis C0= fC 0w : w 2 Wg of H suhthat:1. �(C 0w) = C 0w;2. C 0w = q� l(w)2 Pu�w Pu;w(q)Tu;3. Pu;w 2 Z[q℄ has degree at most 12 (l(u;w)� 1) if u < w, and Pw;w = 1.



22 Chapter 0. Notation and BakgroundThe elements of the basis C0 are urrently alled Kazhdan-Lusztig elementsand are usually denoted this way following the notation of [40℄, where theywere �rst introdued. The polynomials fPu;v(q)gu;v2W � Z[q℄ (where, for no-tational onveniene, it is usual to set Pu;v(q) := 0 if u 6� v) are the wellknown Kazhdan-Lusztig polynomials, or P -polynomials. As the oe�ient ofq 12 (l(u;v)�1) in Pu;v(q) plays a very important role, we denote it, as ustomary,by �(u; v) and we write u � v if �(u; v) 6= 0.The proof of the existene of the Kazhdan-Lusztig elements an be obtainedby showing the reursive property they satisfy. This reurrene leads to thefollowing multipliation.Proposition 0.5.5 Let s 2 S. ThenCsCw = ( (q 12 + q� 12 )Cw ; if s 2 DL(w),Csw +Ps2DL(z) �(z; w)Cz ; if s =2 DL(w),for all w 2W .Hene, given w 2W , we haveCw = CsCsw � Xz:s2DL(z)�(z; sw)Cz :for all s 2 DL(w).Both R-polynomials (and hene eR-polynomials) and Kazhdan-Lusztig poly-nomials ould be equivalently introdued in a purely ombinatorial way throughthe following results.Theorem 0.5.6 Let (W;S) be a Coxeter system. Then there is a unique familyof polynomials fRu;v(q)gu;v2W � Z[q℄ satisfying the following onditions:1. Ru;v(q) = 0 if u 6� v;2. Ru;u(q) = 1;3. if s 2 DL(v) thenRu;v(q) = ( Rsu;sv(q); if s 2 DL(u),qRsu;sv(q) + (q � 1)Ru;sv(q); if s 62 DL(u).



0.5 Kazhdan-Lusztig theory 23Theorem 0.5.7 Let (W;S) be a Coxeter system. Then there is a unique familyof polynomials f eRu;v(q)gu;v2W � Z[q℄ satisfying the following onditions:1. eRu;v(q) = 0 if u 6� v;2. eRu;u(q) = 1;3. if s 2 DL(v) theneRu;v(q) = eRsu;sv(q) + �(suB u) q eRu;sv(q):Theorem 0.5.8 Let (W;S) be a Coxeter system. Then there is a unique familyof polynomials fPu;v(q)gu;v2W � Z[q℄ satisfying the following onditions:1. Pu;v(q) = 0 if u 6� v;2. Pu;u(q) = 1;3. deg(Pu;v(q)) � 12 (l(u; v)� 1), if u < v;4. if u � v, then ql(u;v) Pu;v �1q� = Xu�z�vRu;z(q)Pz;v(q) :The reursive relation for omputing the Kazhdan-Lusztig polynomials is givenin the following results.Theorem 0.5.9 Let (W;S) be a Coxeter system, u; v 2 W , u � v, and s 2DL(v). ThenPu;v(q) = q1�Psu;sv(q) + qPu;sv(q)� Xz:s2DL(z) q l(z;v)2 �(z; sv)Pu;z(q);where  = �(su < u).Corollary 0.5.10 Let (W;S) be a Coxeter system, u; v 2 W , u < v, and s 2DL(v). Then Pu;v(q) = Psu;v(q).Proposition 0.5.5 and Theorems 0.5.6, 0.5.7, 0.5.9 and 0.5.10 an also be refor-mulated in right versions.



24 Chapter 0. Notation and BakgroundIn order to �nd a method for the omputation of the dimensions of theintersetion ohomology modules orresponding to Shubert varieties in G=P ,where P is a paraboli subgroup of the Ka-Moody group G, Deodhar ([27℄)de�ned two paraboli analogues of Kazhdan-Lusztig and R-polynomials, whihorrespond to the roots of the equation x2 = q + (q � 1)x. These polynomialsare related to their ordinary ounterparts in several ways; in partiular, theparaboli Kazhdan-Lusztig polynomials of type �1 are the ordinary ones in theway of Proposition 0.5.13. But they also have diret appliation in di�erentontext. For example, they have onnetions to the theories of tilting modules([54℄), quantized Shur algebras ([61℄) and Lie algebras (in [46℄, Leler and Thi-bon show that the Littlewood-Rihardson oe�ients are values at 1 of ertainparaboli Kazhdan-Lusztig polynomials of type q). Despite this, there are veryfew expliit formulae for them.We refer to [27, ��2-3℄ for the proofs of the two following result.Theorem 0.5.11 Let (W;S) be a Coxeter system, and J � S. Then, for eahx 2 f�1; qg, there is a unique family of polynomials fRJ;xu;v(q)gu;v2WJ � Z[q℄suh that, for all u; v 2W J :1. RJ;xu;v(q) = 0 if u 6� v;2. RJ;xu;u(q) = 1;3. if u < v and s 2 DR(v), thenRJ;xu;v(q) =8><>: RJ;xus;vs(q); if s 2 DR(u),(q � 1)RJ;xu;vs(q) + qRJ;xus;vs(q); if s =2 DR(u) and us 2W J ,(q � 1� x)RJ;xu;vs(q); if s =2 DR(u) and us =2W J .Theorem 0.5.12 Let (W;S) be a Coxeter system, and J � S. Then, for eahx 2 f�1; qg, there is a unique family of polynomials fP J;xu;v (q)gu;v2WJ � Z[q℄,suh that, for all u; v 2W J :1. P J;xu;v (q) = 0 if u 6� v;2. P J;xu;u (q) = 1;3. deg(P J;xu;v (q)) � 12 (l(u; v)� 1), if u < v;



0.5 Kazhdan-Lusztig theory 254. if u � v, then ql(u;v) P J;xu;v �1q� = Xz2[u;v℄J RJ;xu;z(q)P J;xz;v (q) ;The polynomials RJ;xu;v(q) and P J;xu;v (q) of Theorems 0.5.11 and 0.5.12 arealled the paraboli R-polynomials and paraboli Kazhdan-Lusztig polynomialsof W J of type x. By de�nition, R;;�1u;v (q) (= R;;qu;v(q)) and P ;;�1u;v (q) (= P ;;qu;v (q))are the ordinary R-polynomials and Kazhdan-Lusztig polynomials of W .Paraboli Kazhdan-Lusztig and R-polynomials are related to their ordi-nary ounterparts also in the following way (see [27, Propositions 2.12 andRemark 3.8℄ for a proof).Proposition 0.5.13 Let (W;S) be a Coxeter system, J � S, and u; v 2 W J .Then we have RJ;xu;v(q) = Xw2WJ(�x)l(w)Rwu;v(q);for all x 2 f�1; qg, andP J;qu;v (q) = Xw2WJ(�1)l(w)Pwu;v(q)(in partiular, �(u; v) is also the oe�ient of q 12 (l(u;v)�1) in P J;qu;v (q)).Moreover, if WJ is �nite thenP J;�1u;v (q) = PwJ0 u;wJ0 v(q):The Kazhdan-Lusztig polynomials of type q have the following reursiveformula (see [27, Proposition 3.10℄), that will be used in the sequel.Theorem 0.5.14 Let (W;S) be a Coxeter system, J � S, and u; v 2 W J ,u � v. Then for eah s 2 DR(v) we haveP J;qu;v (q) = ~P � Xw2[u;vs℄J : s2DR(w)�(w; vs)q 12 l(w;v)P J;qu;w(q)where ~P = 8><>: P J;qus;vs(q) + qP J;qu;vs(q); if us < u,qP J;qus;vs(q) + P J;qu;vs(q); if u < us 2W J ,0; if u < us =2W J .



26 Chapter 0. Notation and BakgroundRemark. It is easy to prove by indution on l(v) that if us =2 W J then anyP J;qu;w(q) in the sum of Theorem 0.5.14 is 0, and onsequently the paraboliKazhdan-Lusztig polynomial P J;qu;v (q) is 0. Reall that, if u � v, the ordinaryKazhdan-Lusztig polynomial Pu;v(q) is always non-zero.Corollary 0.5.15 Let (W;S) be a Coxeter system, J � S, and u; v 2 W J ,u � v. Then, for eah s 2 DR(v), we haveP J;qu;v (q) = P J;qus;v(q):In partiular, if s 2 DR(v) nDR(u), then �(u; v) = 0.We refer to [9, 39℄ and [40, 27℄ for more details onerning general Coxetergroup theory, and ordinary and paraboli Kazhdan-Lusztig polynomials.0.6 Combinatorial invariane onjetureOne of the most famous onjeture in Kazhdan-Lusztig theory is ertainlyLusztig's onjeture on the ombinatorial invariane of Kazhdan-Lusztig poly-nomials. This long standing onjeture states that the Kazhdan-Lusztig poly-nomial Pu;v(q) depends only on the isomorphism type of the interval [u; v℄ as aposet.Conjeture 0.6.1 (Lusztig) Let (W;S) and (W 0; S0) be two Coxeter systems,u; v 2 W and u0; v0 2 W . Suppose that �: [u; v℄ ! [u0; v0℄ is an isomorphism ofposets (under Bruhat order). ThenPx;y(q) = P�(x);�(y)(q)for all x; y 2 [u; v℄.As a diret onsequene of Theorem 0.5.8 and of (5), Conjeture 0.6.1 an bereformulated both in terms of R and eR-polynomials.Corollary 0.6.2 Let (W;S) and (W 0; S) be two Coxeter systems, u; v 2 W andu0; v0 2 W 0, and let � : [u; v℄ �! [u0; v0℄



0.7 Speial mathings 27be an isomorphism of posets. Then the following are equivalent:i) Px;y(q) = P�(x);�(y)(q) for all x; y 2 [u; v℄;ii) Rx;y(q) = R�(x);�(y)(q) for all x; y 2 [u; v℄;iii) eRx;y(q) = eR�(x);�(y)(q) for all x; y 2 [u; v℄.For many years there have been very few partial results to support it. Thisonjeture was known to be true for [u; v℄ lattie (see [11℄) and for [u; v℄ of rank� 4. Preisely,eRu;v(q) = 8><>: ql(u;v); if [u; v℄ is a lattie,q3 + q; if [u; v℄ is a 2-rown,q4 + B2(u;v)2 q2; if l(u; v) = 4, (6)where B2(u; v) is the number of paths from u to v of length 2 in the Bruhatgraph of W . Reently in [17℄ Brenti proved that Conjeture 0.6.1 is true whenW and W 0 are symmetri groups, and u and u0 are the identities of W and W 0(see Corollary 0.7.7).In Setion 2.3 we prove that Lusztig's onjeture holds when the Coxetergroups W and W 0 are linear Coxeter groups, and the elements v and v0 areBoolean elements. All Chapter 4 is devoted to what is probably the most generalresult on the ombinatorial invariane. We prove that Lusztig's onjeture istrue when u and u0 are the identities of W and W 0 with no restritions on theCoxeter groups W and W 0. The proof of this result is based on the onept ofspeial mathing, to whih is devoted the following setion.0.7 Speial mathingsIn this setion we follow [17℄ to de�ne the speial mathings of a poset, whih arefundamental in Part II. We also ollet the results of [17℄ that will be needed inthe sequel for future referenes. Speial mathings had already been onsideredin the literature by du Cloux ([30℄) under the equivalent onept of ompressionlabelings.Remind that a mathing of a graph G with vertex set V and edge set E isan involution M : V ! V suh that fM(v); vg 2 E for all v 2 V . A mathingof a graph may be visualized by oloring with the same olor all edges of theform fM(v); vg.



28 Chapter 0. Notation and BakgroundDe�nition. Let P be a partially ordered set. We say that a mathing M ofthe Hasse diagram of P is a speial mathing of P ifuC v =)M(u) �M(v);for all u; v 2 P suh that M(u) 6= v.For example, the dotted mathing of the following poset is a speial mathing

while the dashed one is not. For onveniene, in some �gures we do not draw theline of the overing relation between v and M(v). Note that a speial mathinghas ertain rigidity properties. For example, if uCv andM(u)Bu, thenM(v)Bvand M(u)CM(v).The following result is the analogue of the Lifting Lemma (Lemma 0.3.4).Lemma 0.7.1 (Lifting Lemma for speial mathings) Let M be a speialmathing of a loally �nite ranked poset P , and let u; v 2 P , u � v. Then1. if M(v)C v and M(u)C u then M(u) �M(v);2. if M(v)B v and M(u)B u then M(u) �M(v);3. if M(v)C v and M(u)B u then M(u) � v and u �M(v).Lemma 0.7.1 is atually a generalization of the Lifting Lemma and will play animportant role in the sequel.Now restrit our attention to the ase where P is a lower Bruhat interval ofthe symmetri group, namely an interval of the form [e; v℄, with v 2 S(n). Inthis ase we simply refer to a speial mathing of [e; v℄ as a speial mathingof v. Every right or left desent of v leads to a speial mathing of v (this is



0.7 Speial mathings 29atually true in any Coxeter group). In fat, let si 2 DR(v) and de�ne themathing � of [e; v℄ by �(u) := usi, for all u 2 [e; v℄. The lassial LiftingLemma (Lemma 0.3.4) in partiular implies that � satis�es the axioms of aspeial mathing. Analogously, the mathing � de�ned by �(u) := siu for allu 2 [e; v℄ is a speial mathing whenever si 2 DL(v).The following is a further result on the rigidity of speial mathings of per-mutations. It states that a speial mathing of a permutation is ompletelydetermined by how it ats on the atoms.Lemma 0.7.2 Let v 2 S(n) and M;N be two speial mathings of v suh thatM(u) = N(u) for all u � v with l(u) � 1. ThenM(u) = N(u)for all u 2 [e; v℄.The next result we are going to show, is a omplete haraterization of thespeial mathings of v 2 S(n). For this we �rstly need some notation. For alli 2 [n � 1℄ we denote respetively by �i; �i : S(n) ! S(n) the multipliationson the left and on the right respetively by si. In other words, �i(v) := sivand �i(v) := vsi for all v 2 S(n). Now �x i 2 [n � 1℄, and let J = [i℄ andK = [i; n� 1℄. Then we set- li(u) := uJsi Ju;- ri(u) := uKsi Ku;where u = uJ Ju and u = uK Ku are the deompositions of u relative to theparaboli subgroups S(n)J and S(n)K (see Theorem 0.3.7). We also denote by�i; �i; li and ri any restrition of these appliations to a proper subset of S(n).Theorem 0.7.3 Let v 2 S(n) and M be a speial mathing of v with M(e) =si. Then M is either �i; �i; li or ri.We say that a speial mathing M is of type � if M = �i for some i 2 [n � 1℄and we similarly de�ne speial mathings of type �, of type l and of type r.Note that a speial speial mathing may have more than one type. In fat,for example, the unique mathing of the trivial interval [e; si℄ has all the types.The proof of Theorem 0.7.3 tells us also that speial mathings whih are notof type � or � are quite rare. More preisely, we have the following results, thatwe state here for future referenes.



30 Chapter 0. Notation and BakgroundCorollary 0.7.4 Let v 2 S(n).1. If li is a speial mathing of v thensi+1sisi�1 � v:2. If ri is a speial mathing of v thensi�1sisi+1 � v:Corollary 0.7.5 Let u; v 2 S(n), u � v, J = [i℄ and K = [i; n� 1℄.1. Let li be a speial mathing of v and let u = u1u2 with u1 2 S(n)J andu2 2 S(n)K . Then we have either u1 = uJ or u1 = uJsi. In partiular,in both ases, li(u) = u1siu2:2. Let ri be a speial mathing of v and let u = u1u2 with u1 2 S(n)K andu2 2 S(n)J . Then we have either u1 = uK or u1 = uJKsi. In partiular,in both ases, li(u) = u1siu2:Using the lassi�ation of Theorem 0.7.3, Brenti proves the following result,whih is the main theorem of [17℄.Theorem 0.7.6 Let v 2 S(n) and M be a speial mathing of v. Then, for allu � v,Ru;v(q) = ( RM(u);M(v)(q); if M(u)C u;qRM(u);M(v)(q) + (q � 1)Ru;M(v)(q); otherwise,and, equivalently,eRu;w(q) = eRM(u);M(w)(q) + �(M(u)B u) q eRu;M(w)(q):Sine, by de�nition, the set of the speial mathings of v depends only on theisomorphism type of [e; v℄ as a poset, Theorem 0.7.6 is a partial result towardsLusztig onjeture on the ombinatorial invariane (Conjeture 0.6.1).



0.7 Speial mathings 31Corollary 0.7.7 Let v 2 S(n) and v0 2 S(m) be suh that [e; v℄ �= [e; v0℄ asposets. Then Pu;v(q) = P'(u);v0(q)Ru;v(q) = R'(u);v0(q)eRu;v(q) = eR'(u);v0(q)for all u � v and all poset isomorphism ' : [e; v℄! [e; v0℄.In Chapter 4 we generalize Theorem 0.7.6 to any Coxeter group, and hene wean prove the analogue of Corollary 0.7.7 for any Coxeter group.
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Chapter 1Boolean elementsIn this hapter, we intyrodue the Boolean elements and we give the preliminaryresults that make easier the ombinatoris of these elements.1.1 De�nition and preliminary resultsDe�nition. Let (W;S) be any Coxeter system and let t be a re�etion in W .As in [49℄, we all t a Boolean re�etion if it admits a Boolean expression, whihis, by de�nition, a redued expression s1:::sn�1snsn�1:::s1 with sh 2 S for allh 2 [n℄ and si 6= sj if i 6= j. Call any element x 2 W a Boolean element if it issmaller than a Boolean re�etion.We need the following lemma.Lemma 1.1.1 Given a Coxeter system (W;S), let s; t1; : : : ; tn 2 S, s 6= ti forall i 2 [n℄, and l(t1:::tn) = n. Furthermore let ti1 :::tih be a redued subword oft1:::tn suh that sti1 :::tih � t1:::tns. Then s ommutes with every ti1 ; :::; tih .Proof. Sine s 6= ti for all i 2 [n℄, sti1 :::tih and t1:::tns are redued expressions.Then there exists a redued subword tj1 :::tjh+1 of t1:::tns suh thattj1 :::tjh+1 = sti1 :::tihFirst of all, tjh+1 = s beause s must appear in tj1 :::tjh+1 whih is a subword oft1:::tns and s 6= ti for all i 2 [n℄. By Tits' Word Theorem sti1 :::tih and tj1 :::tjhsare linked by a sequene of braid moves. The analysis of this sequene give us35



36 Chapter 1. Boolean elementsthe assertion.Let us start from sti1 :::tih . We do all the braid moves until we enounter abraid move that involves s. There must be suh a move in the sequene beauseat the end s will be in the rightmost plae. So we reah an expression of thefollowing type: sti01 :::ti0hand the next braid move involves s and (neessarily) ti01 . Being ti02 6= s, it mustbe �s;ti01 = sti01 , namely s ommutes with ti01 . So we do that move and we obtainti01sti02 :::ti0h .At the mth step we reah an expression of the following type:ti1 :::tim�1stim :::tihand we have proved that s ommutes with every ti1 ; :::; tim�1 . As before, wedo all the following braid moves of the sequene till we enounter a move thatinvolves s. Again there must be suh a move in the sequene beause at theend s will be in the rightmost plae. So we reah an expression of the followingtype: ti01 :::ti0m�1sti0m :::ti0hIf the following braid move involves s and ti0m�1 we do it and return to the(m�1)th step. If it involves s and ti0m , sine s 6= ti0m+1 , it must be �s;ti0m = sti0m ,namely s ommutes with ti0m . We do the move obtainingti01 :::ti0msti0m+1 :::ti0hand we pass at the (m + 1)th step, having proved that s ommutes also withti0m .At the end of the sequene of braid moves we obtain tj1 :::tjhs and we prove thats ommutes with every tj1 ; :::; tjh , that is with every ti1 ; :::; tih . �The following lemma essentially says what one gains in Tits' Word Theorem(Theorem 0.3.6) by adding the hypothesis that the element u 2 W is Boolean.A short braid move is, by de�nition, a braid move of the shortest type (namely�s;s0 = ss0). Given any s 2 S and any word v 2 S� (where S� denotes the freemonoid on the set S), we denote by v(s) the number of ourrenes of the letters in the word v.



1.1 De�nition and preliminary results 37Lemma 1.1.2 Given a Coxeter system (W;S), let u 2W be a Boolean elementand let u be a redued expression of u whih is subword of the Boolean expressions1 : : : sn : : : s1. Then:1. any other redued expression u of u whih is a subword of s1 : : : sn : : : s1is linked to u by a sequene of short braid moves;2. any expression u of u (not neessarily redued) whih is a subword ofs1 : : : sn : : : s1 is linked to u by a sequene of short braid and nil moves.Proof. 1). Let i be the minimum of the j 2 [n℄ suh that the dispositions ofthe fators sj in u and u are di�erent (i.e. for every h < i, u(sh) = u(sh) andsh appears on the same side in u and in u if u(sh) = u(sh) = 1). Obviouslyu(si) = 0 if and only if u(si) = 0.It is not possible that u(si) 6= u(si). In fat, suppose u(si) = 2, u(si) = 1;after anelling from u and u the fators sh for h < i and the fator si in thesame position, we would obtain two redued expressions of the same element,one with and the other without fators si.So u(si) = u(si) = 1. After anelling the fators sh for h < i from u and u, weobtain two redued expressions of the same element, one with only one fatorsi at the leftmost plae and the other with only one fator si at the rightmostplae. Sine si 6= sj for every i 6= j, by Lemma 1.1.1 si ommutes with everysj , j > i, that ours in u. Iterating this proedure, we get the assertion.2). Let u = t1 : : : tq (ti 2 S) and let r be suh that t1 : : : tr is redued, butt1 : : : trtr+1 is not. By the Exhange Property (Theorem 0.3.1), there exists aunique i suh that t1 : : : trtr+1 = t1 : : : bti : : : tr (obviously this last expression isredued) and ti+1 : : : trtr+1 = titi+1 : : : tr. Sine these are both redued sub-words of s1 : : : sn : : : s1, by 1) they are linked by a sequene of short braid moves.So from the expression t1 : : : titi+1 : : : trtr+1 : : : tq , using only short braid moves,we an reah the expression t1 : : : tititi+1 : : : trtr+2 : : : tq and then we an do anil move. By iterating this proedure, using only short braid and nil moves, weobtain a redued expression of u whih is subword of s1 : : : sn : : : s1. Hene theassertion follows by 1). �Corollary 1.1.3 Given a Coxeter system (W;S), let u, u be two redued ex-pressions of the same Boolean element u 2 W whih are both subwords of aBoolean expression s1 : : : sn : : : s1. Then u(si) = u(si) for all i 2 [n℄.Proof. It is straightforward from Lemma 1.1.2. �



38 Chapter 1. Boolean elementsNow we state two tehnial results that are easy to prove. We assume thatthe linear Coxeter systems have Coxeter graphs of the types in Setion 0.4.Proposition 1.1.4 Let (W;S) be a stritly linear Coxeter system and let t 2Wbe a Boolean re�etion. Then t admits a Boolean expression of one of thefollowing types:1. sasa�1 : : : si+1 sbsb+1 : : : si�1sisi�1 : : : sb+1sb si+1 : : : sa�1sa;2. sbsb+1 : : : si�1 sasa�1 : : : si+1sisi+1 : : : sa�1sa si�1 : : : sb+1sb;for appropriate 0 < b � i � a � n. �Proposition 1.1.5 Let (W;S = fs1; : : : ; sng) be a non-stritly linear Coxetersystem and let t 2 W be a Boolean re�etion. Then, up to a �rotation� of theindies of the generators (that is up to adding a �xed r 2 [n� 1℄ to their indiesand taking the indies modulo n), t admits a Boolean expression of one of thefollowing types:1. sasa�1 : : : si+1 sbsb+1 : : : si�1sisi�1 : : : sb+1sb si+1 : : : sa�1sa;2. sbsb+1 : : : si�1 sasa�1 : : : si+1sisi+1 : : : sa�1sa si�1 : : : sb+1sb;for appropriate 0 < b � i � a � n. If si � t for all i 2 [n℄, we an assumea 6= (i+ 1) in 1), b 6= (i� 1) in 2). �1.2 Notation on Boolean permutationsLet us speialize to the ase W = S(n + 1). Reall that the set S of Coxetergenerators is the set of simple transpositions fsi = (i; i+ 1) for all i 2 [n℄g, theset of re�etions is the set of transpositionsT (S(n+ 1)) = f(i; j) : 1 � i < j � n+ 1g;and the transposition (i; j) admits sisi+1 � � � sj�2sj�1sj�2 � � � si+1si as a reduedexpression. So every re�etion in the symmetri group is Boolean and an ele-ment v is Boolean if and only if v is smaller than the top transposition (1; n+1).Equivalently, v is Boolean if and only if it admits a redued expression whihis a subword of s1 � � � sn�1snsn�1 � � � s1. Note that a Boolean element an haveseveral redued expressions whih are all subwords of s1 � � � sn�1snsn�1 � � � s1.



1.2 Notation on Boolean permutations 39Now we introdue the notation that will be used in Chapter 2.n-Boolean sequenes. After Corollary 1.1.3, we denote by ui the numberof ourrenes of si in any redued expression of u whih is a subword of theBoolean expression s1 : : : sn : : : s1 of (1; n + 1). It is sometimes onvenient tohandle Boolean elements in terms of sequenes. So we introdue a well-de�nedsurjetive map � from the interval [e; (1; n+ 1)℄ to the set of the n-Boolean se-quenes by sending u to (u1; : : : ; un). An n-Boolean sequene is a sequene(x1; : : : ; xn) of n numbers hosen in f0; 1; 2g that avoids the pattern j2; 0j,where j2; 0j-avoidane means that there does not exist an i 2 [n � 1℄ suh that(xi; xi+1) = (2; 0) and that xn 6= 2. All properties are easily heked.Given a n-Boolean sequene x = (x1; : : : ; xn), we de�ne:l(x) = Xi2[n℄xi;p(x) = jfi 2 [n� 1℄ : xi = 1; xi+1 6= 0gj:Then the ardinality of the preimage of the sequene x is equal to 2p(x) andl(u) = l(�(u)) for all u 2 [e; (1; n+ 1)℄.If we endow the range with the omponent-wise partial order, then it is easy tohek that � is a morphism of posets.Now we introdued the notation that will be used in Chapter 3.The maps �R(u; v) and �L(u; v). For onveniene, for all J � S, we iden-tify J with the set fi 2 [n℄ : si 2 Jg. Let w be a Boolean permutation ofS(n + 1). The permutation w an have several redued expressions whihare subwords of s1 � � � sn�1snsn�1 � � � s1. We onsider all these expressions asobtained from s1 � � � sn�1snsn�1 � � � s1 by deleting some letters. For example,onsider the Boolean permutation w 2 S(4) equal to (1; 2)(3; 4) in the ylinotation. Then w has the following two redued expressions whih are obtainedfrom s1s2s3s2s1 in two di�erent ways:(1) s3s1 = bs1 bs2s3 bs2s1(2) s1s3 = s1 bs2s3 bs2 bs1where bs means that s has been deleted. We say that s1 is �on the right� in (1)and �on the left� in (2).Given two Boolean permutations u; v 2 S(n + 1)J , u � v, we want toonstrut two (2� n)-retangular tableaux with entries in f0; 1l; 1r; 2g.



40 Chapter 1. Boolean elementsSuppose �rst that v 6� s1 � � � sn�1sn. After Lemma 1.1.2, we hoose- the unique redued expression v of the permutation v whih is a subwordof s1 � � � sn�1snsn�1 � � � s1 and satis�es the ondition that, for all k 2 [n�1℄suh that v(sk) = 1 and v(sk+1) = 0, the letter sk is on the right;- the unique Boolean expression u of u whih is a subword of v and satis�esthe further ondition that, for all k 2 [n�1℄ suh that u(sk) = 1, u(sk+1) =0 and v(sk) = 2, the letter sk is on the right.We all (u; v) the right Boolean expressions of (u; v). Then �R(u; v) is the2� n-retangular tableau : : :u1u2u3 : : :u4 unv1v2v3v4 vnwhere vi (respetively ui) is 2, 1l, 1r, or 0 aording as to whether v (respetivelyu) has two letters si, one letter si on the left, one letter si on the right or noletters si. Finally, we mark the i-th olumn with d if i 2 J , with � if i =2 J .The dual onditions give rise to the left Boolean expressions of (u; v) and to the(2� n)-retangular tableau �L(u; v).For onveniene, in both tableaux �R(u; v) and �L(u; v), we set vn = 1l ifv(sn) = 1 and un = 1l if u(sn) = 1.For example, if v = s1s3s5s6s7s8s6s5s4 and u = s7s5s3 are permutations ofS(9), then the right Boolean expressions (u; v) of (u; v) are- v = s3s5s6s7s8s6s5s4s1;- u = s3s7s5;the left Boolean expressions (u; v) of (u; v) are- v = s1s3s5s6s7s8s6s5s4;- u = s3s5s7;and, assuming J = f2; 4; 6g, we have�R(u; v) = 0 0 1l 0 1r 0 1l 01r 0 1l 1r 2 2 1l 1l� d dd� � �� �L(u; v) = 0 0 1l 0 1l 0 1l 01l 0 1l 1r 2 2 1l 1ld d d� � � �� :



1.2 Notation on Boolean permutations 41If v � s1 � � � sn�1sn, we de�ne the right and the left Boolean expressions tobe equal, with all the letters on the left. Thus, in this ase, �R(u; v) = �L(u; v)and all non-zero entries are equal to 1l.Furthermore, we introdue the following notation. Choose one of the twotableaux �R(u; v), �L(u; v). We denote byj : : :� �  : : :Æa b  d jthe ardinality of the set:(i 2 [n℄ : (vi; vi+1; vi+2; vi+3; : : :) = (a; b; ; d; : : :);(ui; ui+1; ui+2; ui+3; : : :) = (�; �; ; Æ; : : :) ) :We let a; b; ; d; : : : ; �; �; ; Æ; : : : 2 f0; 1l; 1r; 2; 06 ; 26 ; �g where by 06 (respe-tively 26 ) we mean that the entry must be 6= 0 (respetively 6= 2) and where �stands for any entry. As above, if neessary, we use d or � to further requirethat a olumn belong to J or not. In the previous example,j1l 01l �� j = 2both in �R(u; v) and �L(u; v). In other words, we are ounting the sub-tableauxof �R(u; v) or of �L(u; v) mathing 1l 01l �� .Now, let v be a Boolean permutation in S(n + 1) and let v be any of itsredued expressions whih are subwords of s1 � � � sn�1snsn�1 � � � s1. By Propo-vi�1 vi vi+1� 0 �1l 1l �2, 1l 2 �� 1r 6= 01l 1r 0Table 1.1:sition 0.3.2 and Tits' Word Theorem (Theorem 0.3.6), we have that si =2 DL(v)



42 Chapter 1. Boolean elementsif and only if we are in one of the (mutually exlusive) possibilities in Table 1.2,where vi�1, vi, vi+1 enode the types of ourrenes of si�1, si, si+1 in v, andwhere � stands for any entry. In partiular, if v is a Boolean permutation inS(n+ 1)J , then this must be true for all i 2 J .



Chapter 2R-polynomials andKazhdan-Lusztig polynomialsIn this Chapter we give some losed expliit produt formulae valid in the asethat the indexing elements are Boolean. In partiular, for any Coxeter system,we ompute the R-polynomials, and for any linear Coxeter system we omputethe Kazhdan-Lusztig polynomials, the Kazhdan-Lusztig elements and the inter-setion homology Poinaré polynomials. Moreover the formula for the Kazhdan-Lusztig polynomials allows us to prove Lusztig's onjeture of the ombinatorialinvariane foe Boolean elements and to list all pairs (u; v) of Boolean elementswith u � v, namely with �(u; v) 6= 0.Throughout this hapter, when the Coxeter group W is the symmetri group,we make use of the notion of n-Boolean sequene we introdued in Setion 1.2.2.1 R-polynomialsReall that for any s 2 S and any word x 2 S� (where S� denotes the freemonoid on the set S), we denote by x(s) the number of ourrenes of the letters in the word x.Theorem 2.1.1 Given any Coxeter system (W;S), let u; v 2 W be Booleanelements, u � v. Fix a redued expression v of v whih is a subword of aBoolean expression s1 : : : sn : : : s1 and a redued expression u of u whih is a43



44 Chapter 2. R-polynomials and Kazhdan-Lusztig polynomialssubword of v. Then Ru;v(q) = (q � 1)l(u;v)�2a(q2 � q + 1)a;wherea = �����(i 2 [n℄ : v(si) = 2u(si) = 0 and m(si; sj) = 2, 8j > i suh that u(sj) 6= 0)����� :In partiular, if W = S(n+ 1) and s1; : : : ; sn are the usual Coxeter generatorsof S(n+ 1) , this means that:a = �����(i 2 [n℄ : vi = 2ui = 0 ui+1 = 0 )����� :Proof. We proeed by indution on n, the result being lear for n = 1.If v(s1) = u(s1) = 0, we onlude right away by indution sine u � v �s2:::sn�1snsn�1:::s2. So we suppose v(s1) 6= 0 and fous our attention on thenumber and the position of the ourrenes of s1 in v and u. We have to onsiderthe following ases, in whih ŝ1 means that s1 has been deleted and in whihwe do not bother about si, i 6= 1.a1) ( v = s1:::̂:::̂:::sn:::̂:::̂:::ŝ1u = s1:::̂:::̂:::sn:::̂:::̂:::ŝ1Then by Theorem 0.5.2 we get Ru;v(q) = Rs1u;s1v(q) and we onlude by indu-tion sine s1u � s1v � s2:::sn�1snsn�1:::s2.a2) ( v = s1:::̂:::̂:::sn:::̂:::̂:::ŝ1u = ŝ1:::̂:::̂:::sn:::̂:::̂:::ŝ1Then by Theorem 0.5.2 we get Ru;v(q) = qRs1u;s1v + (q � 1)Ru;s1v(q) and weonlude by indution sine s1u 6� s1v and u � s1v � s2:::sn�1snsn�1:::s2.b1) ( v = ŝ1:::̂:::̂:::sn:::̂:::̂:::s1u = ŝ1:::̂:::̂:::sn:::̂:::̂:::s1Like a1) using the right version of Theorem 0.5.2.b2) ( v = ŝ1:::̂:::̂:::sn:::̂:::̂:::s1u = ŝ1:::̂:::̂:::sn:::̂:::̂:::ŝ1Like a2) using the right version of Theorem 0.5.2.



2.1 R-polynomials 451) ( v = s1:::̂:::̂:::sn:::̂:::̂:::s1u = s1:::̂:::̂:::sn:::̂:::̂:::s1Ru;v(q) = Rs1u;s1v(q) = Rs1us1;s1vs1(q) and we onlude by indution sines1us1 � s1vs1 � s2:::sn�1snsn�1:::s2.2) ( v = s1:::̂:::̂:::sn:::̂:::̂:::s1u = s1:::̂:::̂:::sn:::̂:::̂:::ŝ1Ru;v(q) = Rs1u;s1v(q) = qRs1us1;s1vs1(q) + (q� 1)Rs1u;s1vs1 and we onlude byindution sine s1us1 6� s1vs1, s1u � s1vs1 � s2:::sn�1snsn�1:::s2.3) ( v = s1:::̂:::̂:::sn:::̂:::̂:::s1u = ŝ1:::̂:::̂:::sn:::̂:::̂:::s1Like 2.4) ( v = s1:::̂:::̂:::sn:::̂:::̂:::s1u = ŝ1:::̂:::̂:::sn:::̂:::̂:::ŝ1We have to distinguish two subases:1) s1u 6� s1vThen we getRu;v(q) = qRs1u;s1v(q)+(q�1)Ru;s1v = (q�1)[qRus1;s1vs1(q)+(q�1)Ru;s1vs1 ℄and we onlude by indution sine us1 6� s1vs1, u � s1vs1 � s2:::sn�1snsn�1:::s2.2) s1u � s1vThen we get Ru;v(q) = qRs1u;s1v(q) + (q � 1)Ru;s1v == qRs1us1;s1vs1(q) + (q � 1)[qRus1;s1vs1 (q) + (q � 1)Ru;s1vs1(q)℄ == (q2 � q + 1)Ru;s1vs1(q)being, by Lemma 1.1.1, u = s1us1 and us1 6� s1vs1. So we onlude by indutionsine u � s1vs1 � s2:::sn�1snsn�1:::s2.Call u0 and v0 the elements whih are represented by the expressions weobtain from u and v by deleting all the letters s1. In every ase, exept insubase 2) of ase 4), we haveRu;v(q) = (q � 1)v(s1)�v(s1)Ru0;v0(q):



46 Chapter 2. R-polynomials and Kazhdan-Lusztig polynomialsReall that we are in subase 2) of ase 4) when v (s1) = 2, u (s1) = 0 ands1u � s1v, namely, by Lemma 1.1.1, when v (s1) = 2, u (s1) = 0 and s1ommutes with every sj j > 1 suh that u (sj) 6= 0. In this aseRu;v(q) = (q2 � q + 1)Ru0;v0(q):The result follows by iterating this proedure. �Example 1 Let us alulate the R-polynomial indexed by u = s1s2s5s1 andv = s1s2s3s4s5s6s4s3s2s1 in S(7). We immediately �nd that l(u; v) = 6 anda = jf3gj, and therefore Ru;v(q) = (q � 1)4(q2 � q + 1):As a orollary of Theorem 2.1.1, we give the proof of Conjeture 7.7 of [15℄.Corollary 2.1.2 Let u; v 2 S(n) be suh that u � v � (i; j) for some i; j 2 [n℄,i < j. Then there exists a 2 N suh thatRu;v(q) = (q � 1)a(q2 � q + 1) 12 [l(u;v)�a℄Proof. It is straightforward from Theorem 2.1.1. In fat the transposition(i; j) is a Boolean re�etion of Boolean expression sisi+1:::sj�2sj�1sj�2:::si+1si(where, as always, sk = (k; k + 1) for all k). �We think that it is worthwhile to mention the following equivalene thatdeals with the R-polynomials whih are produt of fators of types (q � 1) and(q2 � q + 1), suh as those of Theorem 2.1.1.Theorem 2.1.3 Given a Coxeter system (W;S), let w 2 W . Then the follow-ing are equivalent:1. a(u; sv) = a(su; sv) + 1 for all u; v � w and s 2 S suh that u < su �sv < v;2. Ru;v(q) = (q � 1)a(u;v)(q2 � q + 1) 12 [l(u;v)�a(u;v)℄ for all u � v � w;where, for x; y 2 W , x � y, (q � 1)a(x;y) is the largest power of (q � 1) thatdivides Rx;y(q).Proof. Let us prove that 1) implies 2) by indution on l(v). Let s 2 DL(v). Ifs 2 DL(u) or s =2 DL(u) but su 6� sv then we onlude by indution. Otherwise



2.2 Kazhdan-Lusztig polynomials 47Ru;v(q) = qRsu;sv(q) + (q � 1)Ru;sv(q) that, by indutive assumption, is equalto q[(q � 1)a(su;sv)(q2 � q+1) 12 [l(su;sv)�a(su;sv)℄℄ + (q � 1)[(q� 1)a(u;sv)(q2 � q+1) 12 [l(u;sv)�a(u;sv)℄℄. By hypothesis, this polynomial is equal to (q�1)a(su;sv)(q2�q + 1) 12 [l(su;sv)�a(su;sv)℄[q + (q � 1)2℄.Conversely �x (if there are) s 2 S suh that u < su � sv < v. Then Ru;v(q) =qRsu;sv(q)+(q�1)Ru;sv(q) = q[(q�1)a(su;sv)(q2�q+1) 12 [l(su;sv)�a(su;sv)℄+(q�1)[(q�1)a(u;sv)(q2� q+1) 12 [l(u;sv)�a(u;sv)℄℄. But Ru;v(q) = (q�1)a(u;v)(q2� q+1) 12 [l(u;v)�a(u;v)℄ and an easy argument of divisibility shows that this is possibleonly if a(u; sv) = a(su; sv) + 1. �2.2 Kazhdan-Lusztig polynomialsTheorem 2.2.1 Let u and v be Boolean elements in S(n+ 1), u � v. ThenPu;v(q) = (1 + q)b;where b = �����(k 2 [n℄ : vk = 2 vk+1 = 2uk+1 = 0 )����� :Proof. Fix a redued expression v of v whih is a subword of the Booleanexpression s1 : : : sn : : : s1 of (1; n+ 1) and a redued expression u of u whih isa subword of v. Let us fous our attention on the number and the position ofthe fators s1 in v and u. We onsider the following ases:a) v1 = u1 = 1.We may assume that the letter s1 is at the leftmost plae in v and u. Then,by Theorem 0.5.9, we get Pu;v(q) = Ps1u;s1v(q) + qPu;s1v(q) = Ps1u;s1v(q)sine u 6� s1v.b) v1 = 1, u1 = 0.We may assume that the letter s1 is at the leftmost plae in v. Then,by Corollary 0.5.10, we get Pu;v(q) = Ps1u;v(q) and we onlude thatPu;v(q) = Pu;s1v(q) as in a).) v1 = u1 = 2.Pu;v(q) = Ps1u;s1v(q) + qPu;s1v(q) = Ps1u;s1v(q) sine u 6� s1v. So, as ina), we get Pu;v(q) = Ps1us1;s1vs1(q).



48 Chapter 2. R-polynomials and Kazhdan-Lusztig polynomialsd) v1 = 2, u1 = 1.We may assume that the letter s1 is at the leftmost plae in u. By Corol-lary 0.5.10, Pu;v(q) = Ps1u;v(q) and we are in ase e).e) v1 = 2, u1 = 0.We must distinguish two subases:1) s1u 6= us1By Lemma 1.1.1, this happens if and only if u2 6= 0, or, equivalently, ifand only if s1us1 is redued. By Corollary 0.5.10 (�rst left and then rightversion), we get Pu;v(q) = Ps1u;v(q) = Ps1us1;v(q) and, as in ), we getPu;v(q) = Pu;s1vs1 (q).2) s1u = us1Conerning the fators s2, we have u2 = 0 and two possibilities for v:i) v2 = 1,ii) v2 = 2,(neessarily v2 6= 0 sine v1 = 2).In i), we may assume that the letter s2 is at the leftmost plae in v. Thens2 2 DL(v). So Pu;v(q) = Ps2u;v(q) and we are in ase e) 1). We getPu;v(q) = Ps2u;s1vs1(q). As to the fators s2, we are in ase a) and we getPu;v(q) = Pu;s2s1vs1(q) �nding that also the fators s2 give no ontribution.In ii), we getPu;v(q) = qPs1u;s1v(q) + Pu;s1v(q)� Xz:s12DL(z) q l(z;v)2 �(z; s1v)Pu;z(q):By the fat that s1 ommutes with every si that ours in u and byCorollary 0.5.10, we get Ps1u;s1v = Pus1;s1v = Pu;s1v and as in b) we getPu;s1v = Pu;s1vs1 . SoPu;v(q) = (1 + q)Pu;s1vs1 (q)� Xz:s12DL(z) q l(z;v)2 �(z; s1v)Pu;z(q):Now we laim that fz : u � z < s1v; s1 2 DL(z)g � fz : s2 6� zg. In fat,z < s1v implies that z admits a redued expression z0s1 with z0(s1) = 0.Sine s1 2 DL(z), s1z0s1 is not redued and so, by the Exhange Property,



2.2 Kazhdan-Lusztig polynomials 49we get that s1z0s1 and z0 represent the same element, as s1z0 is redued.Applying Lemma 1.1.1 to s1z0 = z0s1, we obtain that s1 ommutes withevery letter that ours in z0, namely z0(s2) = 0.Therefore s2 2 DL(s1v) nDL(z), and we �nd thatdegPz;s1v = degPs2z;s1v � 12 (l(z; s1v)� 2)(sine s2z 6= s1v). So �(z; s1v) = 0 for all z in the sum and this givesPu;v(q) = (1 + q)Pu;s1vs1(q).In all ases, the P -polynomial indexed by u and v is equal to the P -polynomialindexed by the elements that we obtain from u and v by erasing all the fatorss1, exept in ases d) and e) when they fall under the ase e)-2)-ii). In theseases we get a fator (1 + q).By iterating this proedure, the result follows. �We illustrate Theorem 2.2.1 with an example.Example 2 Let W = S(8), u = s1s5s7 and v = s1s2s3s4s5s6s7s6s5s3s2s1.Then �(v) = (2; 2; 2; 1; 2; 2; 1)�(u) = (1; 0; 0; 0; 1; 0; 1):There are exatly 3 sub-tableaux of the type022in 1 0 0 0 1 0 12 2 2 1 2 2 1 .Therefore Pu;v(q) = (1 + q)3.Note that, similarly, by Theorem 2.1.1, the number of sub-tableaux of the type002omputes the R-polynomial Ru;v(q).Now we extend this result to other Coxeter systems. The same argument ofthe proof of Theorem 2.2.1 holds for every Coxeter system till we enounter the



50 Chapter 2. R-polynomials and Kazhdan-Lusztig polynomialsase e)-2), where we strongly use the speial properties of the symmetri group.So we need to proeed in a di�erent way.We show how Theorems 2.1.1 and 2.2.1, in onjuntion with Lemma 1.1.2, implythe result for stritly linear Coxeter systems. First we need the following lemma,where we use the same symbols s1; : : : ; sm for both the generators of W and thegenerators of S(m+ 1).Lemma 2.2.2 Let (W;S = fs1; : : : ; smg) be a stritly linear Coxeter system.Let t 2 W be a Boolean re�etion with Boolean expression t. Consider the map : [e; t℄W �! S(m + 1) de�ned as follows: if z 2 [e; t℄W admits the reduedexpression z whih is a subword of t, then  (z) is the element of S(m + 1)represented by the same expression z. Then  is an isomorphism of posets from[e; t℄W to [e;  (t)℄S(m+1).Proof. The map  is well de�ned: in fat, by Lemma 1.1.2, any two suhredued expression of the same z 2 W are linked by short braid moves, andW and S(m+ 1) share the same short braid moves. Moreover, the expressiont = t1 : : : tn�1tntn�1 : : : t1 is redued also in S(m + 1). In fat, suppose, byontradition, that there exists k 2 [n℄ suh that t1 : : : tn�1tntn�1 : : : tk�1 isredued while t1 : : : tn�1tntn�1 : : : tk is not. Then, learly, tk : : : tn�1tntn�1 : : : tkis not redued (by hypothesis, ti 6= tj if i 6= j). Hene, by Lemma 1.1.1,tk ommutes with tj for all j > k in S(m + 1), and so also in W , and thisis a ontradition beause t is redued in W . This means that t is a Booleanexpression of the Boolean re�etion  (t) of S(m+1). Now Lemma 1.1.2 impliesthat l(z) = l( (z)), for all z 2 [e; t℄W , and that  is an isomorphism of posetsfrom [e; t℄W to [e;  (t)℄S(m+1) by the haraterization of the Bruhat order interms of redued expressions. �Theorem 2.2.3 Let (W;S = fs1; : : : ; smg) be a stritly linear Coxeter system.Let u; v 2W be suh that u � v � t, where t is a Boolean re�etion. ThenPu;v(q) = P (u); (v)(q);where  is as in Lemma 2.2.2, and P (u); (v)(q) an be omputed as in Theo-rem 2.2.1.Proof. First of all we �x a Boolean expression t of t, a redued expression v ofv whih is a subword of t and a redued expression u of u whih is a subwordof v.



2.2 Kazhdan-Lusztig polynomials 51Reall that, if an element z has a redued expression z whih is a subword ofv, then the map  sends z to the element of S(m+1) represented by the sameexpression z. Theorem 2.1.1 shows that the R-polynomial depends only on thehosen redued expression and on the ommutation relations between the gen-erators of the Coxeter system. So for all x; y 2 [u; v℄W , Rx;y(q) = R (x); (y)(q).Finally property 4) of Theorem 0.5.8, in onjuntion with Lemma 2.2.2, impliesthat the same equality also holds for the P -polynomials. �Example 3 Let (W;S = fs1; s2; s3; s4g) be a stritly linear Coxeter system,v = s4s1s2s3s2s1s4, u = s4s1. Then  (v) = s4s1s2s3s2s1s4 = s1s2s3s4s3s2s1 2S(5),  (u) = s4s1 2 S(5), and Pu;v(q) = P (u); (v)(q) = (1 + q)2.The following result deals with the non-stritly linear Coxeter systems.Theorem 2.2.4 Let (W;S = fs1; : : : ; smg) be a non-stritly linear Coxeter sys-tem. Let u; v 2 W be suh that u � v � t where t is a Boolean re�etion thatwe an assume suh that si � t for all i 2 [m℄. Then there exists b 2 N suhthat: Pu;v(q) = (1 + q)b:Fix a Boolean expression t = t1 : : : tn�1tntn�1 : : : t1 for t of the type shown inProposition 1.1.5, a redued expression v of v whih is a subword of t and aredued expression u of u whih is a subword of v. Suppose that tj is, togetherwith t2, the only other generator that does not ommute with t1. Then Pu;v(q) =(1+q)b0Pu0;v0(q), where u0 and v0 are the elements represented by the expressionswe obtain by erasing all the letters t1 in u and v, and whereb0 = ( 1; if v(t1) = 2, u(t2) = 0 and u(tj) = 0;0; otherwise.Then ompute Pu0;v0(q) as in Theorem 2.2.3 (there are no longer ourrenes oft1).Proof. We an repeat the same argument of the proof of Theorem 2.2.1, re-plaing s1 with t1, till we enounter the ase e)-2), that now means that v has aletter t1 both at the rightmost and at the leftmost plae while u has no letterst1, t2, tj . So we get:Pu;v(q) = qPt1u;t1v(q) + Pu;t1v(q)� Xz:t12DL(z) q l(z;v)2 �(z; t1v)Pu;z(q):



52 Chapter 2. R-polynomials and Kazhdan-Lusztig polynomialsBy the fat that t1 ommutes with every ti that ours in u and by Corol-lary 0.5.10, we get Pt1u;t1v = Put1;t1v = Pu;t1v and as in b) we get Pu;t1v =Pu;t1vt1 . SoPu;v(q) = (1 + q)Pu;t1vt1(q)� Xz:t12DL(z) q l(z;v)2 �(z; t1v)Pu;z(q):Now we laim that fz : u � z < t1v; t1 2 DL(z)g � fz : t2 6� z; tj 6� zg. Infat, z < t1v implies that z admits a redued expression z0t1 with z0(t1) = 0.Sine t1 2 DL(z), t1z0t1 is not redued and so, by the Exhange Property, weget that t1z0t1 and z0 represent the same element, as t1z0 is redued. ApplyingLemma 1.1.1 to t1z0 = z0t1, we obtain that t1 ommutes with every letter thatours in z0, namely z0(t2) = z0(tj) = 0.Therefore t2 2 DL(t1v) nDL(z), and we �nd thatdegPz;t1v = degPt2z;t1v � 12 (l(z; t1v)� 2)(sine t2z 6= t1v). So �(z; t1v) = 0 for all z in the sum and this gives Pu;v(q) =(1 + q)Pu;t1vt1(q).Now, sine u0 � v0 � t2 : : : tn�1tntn�1 : : : t2, we an think of our elements as inthe stritly linear Coxeter system (W 0; S n ft1g). �Remarks. It is worthwhile to remark the following fats.1. If the Coxeter system is not irreduible, and S = SSi is the deompositioninto irreduible omponents, then the expression t1 : : : tn�1tntn�1 : : : t1 isredued only if all the generators tj belong to the same Si.2. If W = S(n), it is easy to see that a Boolean permutation v is alwaysovexillary (3412 avoiding). Therefore, the polynomial Pu;v(q) an alsobe omputed using the algorithm given in [44℄. However, it seems tobe di�ult to derive the expliit formulae of Theorem 2.2.1 from thisalgorithm if v < (1; n).3. The results in this setion do not hold for general Coxeter systems. In fat,let (W;S) be a Coxeter system suh that S ontains s1, s2, s3 and r withm(si; sj) = 2 for all i 6= j, m(si; r) � 3 for all i. Then Pu;v(q) = 1 + 2q,where v = s1s2rs3rs2s1, u = s3s2s1.



2.3 Combinatorial invariane 532.3 Combinatorial invarianeIn this setion we prove that Lusztig's onjeture of the ombinatorial invariane(Conjeture 0.6.1) is true for Boolean elements in stritly linear Coxeter groups.More preisely, we prove that, given two Boolean elements u and v in a stritlylinear Coxeter group W , the polynomial Pu;v(q) an be easily omputed froml(u; v), 1(u; v) and 2(u; v), wherei(u; v) := jCi(u; v)j;Ci(u; v) := fz 2 [u; v℄ : l(z; v) = ig;for i = 1; 2. The elements of C1(u; v) are the oatoms of [u; v℄.Furthermore, let gi(u; v) = jGi(u; v)j and hi(u; v) = jHi(u; v)j, whereGi(u; v) := fz 2 [u; v℄ : z�1v 2 T (W ); l(z; v) = (1 + 2i)g;Hi(u; v) := fz 2 [u; v℄ : u�1z 2 T (W ); l(u; z) = (1 + 2i)g;for all possible i 2 N. Thanks to the following theorem due to Dyer [32℄, theyare all ombinatorial invariants of [u; v℄ as a poset.Theorem 2.3.1 Let (W;S) be a Coxeter system, u; v 2 W . The isomorphismtype of the poset [u; v℄ determines the isomorphism type of its Bruhat graph.As we an dedue from (6), if l(u; v) � 4, the R-polynomial Ru;v(q) dependsonly on gi(u; v) and hi(u; v). At the end of this setion we show that this is nottrue in general, and we give a ounterexample. The smallest S(n) in whih wean �nd a ounterexample for Boolean elements is S(10).Let us �rst onsider the ase u and v Boolean elements in S(n + 1). Tosimplify notation, we setXj;kl;m := jfi 2 [n℄; vi = j vi+1 = kui = l ui+1 = m gj:In partiular, X2;�1;6=0 means that vi = 2, vi+1 an be any number, ui = 1 andui+1 must be di�erent from 0. We write, respetively, a(u; v) and b(u; v) forthe exponents in Theorem 2.1.1 and in Theorem 2.2.1, and we always omit thedependene on (u; v) when no onfusion arises.In the proof of the following results, we use Tits' Word Theorem (Theorem 0.3.6)



54 Chapter 2. R-polynomials and Kazhdan-Lusztig polynomialsand Lemma 1.1.2 without expliit mention.Proposition 2.3.2 Let u and v be Boolean elements in S(n+1), u � v. Then1 = l + b� a; (2.1)2 = l2(l � 1) + b� a2 (b� a+ 2l� 3)� b: (2.2)Proof. Equation (2.1) follows from a result of Brenti [11℄, valid in any CoxetersystemW and for any x; y 2W . It states that 1(x; y) is equal to the oe�ientof q in Px;y(q) (in this ase b by Theorem 2.2.1) minus (�1)l times the oe�ientof q in Rx;y(q) (in this ase (�1)l+1(l � a) by Theorem 2.1.1).Fix a redued expression v of v whih is a subword of the Boolean expressions1 : : : sn : : : s1 of (1; n+ 1) and a redued expression u of u whih is a subwordof v. Then u is obtained from v by deleting l letters. We have that2 = jAj � jBj2 + jCj;where:� A is the set of the redued expressions z we an obtain from v by deletingonly 2 letters of those we deleted to obtain u;� B � A�A is the set of pairs (z; z) of distint expressions in A suh that zand z are linked by short braid moves, and so represent the same element;� C is the set of the redued expressions z suh that:� z is obtained from v by deleting 2 letters, si and sj , suh that at leastone of them, say si, is not deleted in u;� z does not represent an element already represented by an expressionin A;� u is linked by short braid moves to a subword of z.Let us alulate jAj, jBj and jCj.A). Let z be an expression we obtain from v by deleting two fators, say siand sj , of those we deleted to obtain u. It fails to be redued if and only if forat least one between i and k, say i, we have (z(si�1); z(si)) = (2; 0). If i = j,this happens only if (vi�1; vi) = (2; 2) and ui = 0. If i 6= j, this happens onlyif (vi�1; vi) = (2; 1) and ui = 0; in this ase, the other fator sj we are deleting



2.3 Combinatorial invariane 55an be any of the other letters of v that are deleted in u, exept si�1. Theseare l� 2 if ui�1 = 1, l� 3 if ui�1 = 0. Being areful not to ount twie the ase(z(si�1); z(si); z(sk�1); z(sk)) = (2; 0; 2; 0), we get:jAj =  l2 !�0B�X2;2�;0 + 2+X2;10;0Xk=3 (l � k) + 1+X2;11;0+X2;10;0Xk=2+X2;10;0 (l � k)1CA ;that, being X2;2�;0 = b by Theorem 2.2.1, beomes:jAj =  l2 !�0�b+ 1+X2;1�;0Xk=3 (l � k)1A� (l � 2�X2;10;0 ):B). Let z and z be two di�erent expression in A linked by braid moves. Ne-essarily, to obtain z and z, we have deleted letters of the same type, say si andsj . Suppose that we have deleted the si on the left to obtain z and on theright to obtain z (so neessarily vi = 2). If z and z are linked by braid moves,then zi+1 = 0. But vi+1 6= 0 beause vi = 2, and so j must be i + 1. HenejBj2 = X2;10;0 .C). Neessarily vi = 2, ui = 1 and ui+1 = 0, while zi+1 6= 0 otherwise z wouldrepresent an element already represented by an expression in A. The element of expression  equal to v with only the sj deleted is a oatom. In fat itis redued, otherwise it should be vj = 1 and j = i + 1 (z is redued), butzi+1 6= 0. Conversely, we obtain an element of those we are now ounting fromevery oatom  with i = 2 deleting the letter si not deleted in u. The numberof suh oatoms is (1�2) for all i suh that vi = 2, ui = 1 and ui+1 = 0. Beingareful to ount without repetition, we get:jCj = X2;�1;0+1Xk=2 (1 � k);that, by (2.1), beomes: jCj = X2;�1;0+1Xk=2 (l + b� a� k):



56 Chapter 2. R-polynomials and Kazhdan-Lusztig polynomialsBeing X2;�0;0 = a by Theorem2.1.1, our assertion is proved. �Now we are able to prove the main theorem of this setion.Theorem 2.3.3 Let (W;S) be a stritly linear Coxeter system, u and v beBoolean elements of W . Then Ru;v(q) = (q� 1)l�2a(q2 � q+1)a and Pu;v(q) =(1 + q)b where a = 2l+ 12 (1 � 5)� 2;b = l + 12 (1 � 3)� 2:Proof. If W = S(n + 1), the result follows ombining (2.1) and (2.2). Oth-erwise, by the proof of Theorem 2.2.3, [u; v℄ is poset-isomorphi to a ertaininterval in S(n), for an appropriate n, and share the same Kazhdan-Lusztigpolynomial with it. This proves our assertion. �Finally we show that onsidering only the gi and the hi is not the right wayto takle Lusztig's onjeture. In fat, we have the following example.Example 2.3.4 Let W = S(10),v = s1s2s3s4s5s6s7s8s9s4s3s2s1; v0 = s1s2s3s4s5s6s7s8s9s8s7s5s4s2s1;u = s1s4; u0 = s1s4s7s9:Then �(v) = (2; 2; 2; 2; 1; 1; 1; 1; 1) �(v0) = (2; 2; 1; 2; 2; 1; 2; 2; 1)�(u) = (1; 0; 0; 1; 0; 0; 0; 0; 0) �(u0) = (1; 0; 0; 1; 0; 0; 1; 0; 1)and l = 11, 1 = g0 = 12, h0 = 10, h1 = 4, and g1 = gi = hi = 0, fori > 1, for both the intervals [u; v℄ and [u0; v0℄. However Pu;v = (1 + q)2 whilePu0;v0 = (1 + q)3. Of ourse, this agrees with the result in Theorem 2.3.3 sine2(u; v) = 63 while 2(u0; v0) = 62.2.4 The top oe�ientIn this setion we lassify all those Kazhdan-Lusztig polynomials indexed byBoolean elements in a linear Coxeter system (W;S) whih have the highestpossible degree. These partiular polynomials play a fundamental role in the



2.4 The top oe�ient 57onstrution of the Kazhdan-Lusztig representations (see [40℄). Moreover theyappear in the reursive property of Theorem 0.5.9, and so Corollaries 2.4.1, 2.4.2and 2.4.3 have appliations in the omputation of generi Kazhdan-Lusztig poly-nomials (see [23, 24℄).Let us treat �rst the aseW = S(n+1), and let us handle the Boolean elementsin S(n+ 1) in terms of n-Boolean sequenes (see Setion 1.2).Corollary 2.4.1 Let u; v 2 S(n+1) be Boolean elements suh that l(u; v) > 1.Then u � v if and only if there exist 1 � l1 < l2 < n suh thatvk = uk; if 1 � k < l1;vk = 2 and uk = 1; if k = l1;vk = 2 and uk = 0; if l1 < k � l2;vk = uk; if l2 < k � n:Proof. The proof omes from the analysis of the proof of Theorem 2.2.1.Fix a redued expression v of v whih is a subword of s1 : : : sn : : : s1 and aredued expression u of u whih is a subword of v. To simplify, we de�nePj to be the Kazhdan-Lusztig polynomial indexed by the elements having asredued expressions u and v with all the letters s1; : : : ; sj deleted. For example,if v = s1s2s3s4s3s1 and u = s1s4, then P2 = Ps4;s3s4s3(q).Suppose that vk = uk, for 1 � k < l1, and vl1 > ul1 . Then Pu;v(q) = Pl1�1 andPl1�1 is a Kazhdan-Lusztig polynomial indexed by elements whose di�ereneof the length is l(u; v). If (vl1 ; vl1+1; ul1 ; ul1+1) =2 f(2; 2; 0; 0); (2; 2; 1; 0)g, thenPu;v(q) = Pl1 but Pl1 is indexed by elements whose di�erene of the length is< l(u; v), and so Pu;v(q) annot have maximum degree allowed (by hypothesisl(u; v) > 1 and so Pl1 is not indexed by equal elements if vl1 = ul1 + 1).Suppose now that:(vl1 ; vl1+1; : : : ; vn) = (2; 2; : : : ; 2; vl2+1 = f; �; : : : ; �)(ul1 ; ul1+1; : : : ; un) = (x; 0; : : : ; 0; ul2+1 = g; �; : : : ; �)where x 2 f1; 0g and (f; g) 6= (2; 0).Then Pu;v(q) = (1 + q)l2�l1Pl2 and Pl2 is indexed by elements whose di�ereneof the length is (l(u; v)� 2(l2� l1+1)+ x). If Pu;v(q) has degree 12 (l(u; v)� 1)then Pl2 has degree 12 (l(u; v)� 1� 2(l2 � l1)). This happens if and only if x = 1and Pl2 is indexed by equal elements. �Example 4 The Kazhdan-Lusztig polynomial indexed by u = s1s3s7s4s3s2 and



58 Chapter 2. R-polynomials and Kazhdan-Lusztig polynomialsv = s1s3s4s5s6s7s6s5s4s3s2 in S(8) has the highest possible degree. In fat, theBoolean sequenes (1; 1; 2; 1; 0; 0; 1) and (1; 1; 2; 2; 2; 2; 1) assoiated to u and vsatisfy the requirement of Corollary 2.4.1 with l1 = 4 and l2 = 6.The ase of (W;S) being generi linear Coxeter system is treated by the followingtheorems, whose proofs easily derive from Theorems 2.2.3 and 2.2.4.Corollary 2.4.2 Under the hypotheses of Theorem 2.2.3, assume l(u; v) > 1.Then u � v if and only if  (u) �  (v) in (m+ 1). �Let W be a non-stritly linear Coxeter system, w 2 W be a Boolean element,and w be a redued expression of w whih is a subword of the Boolean expres-sion t1 : : : tn�1tntn�1 : : : t1. We denote by iL;tk(w) and iR;tk(w) the elementsrepresented by the expressions we obtain by inserting a fator tk to the leftand to the right, respetively, in the appropriate position in w. For instane, ifw = t1t3t4t2t1, then iL;t2(w) = t1t2t3t4t2t1 and iR;t3(w) = t1t3t4t3t2t1.Corollary 2.4.3 Under the hypotheses of Theorem 2.2.4, assume l(u; v) > 1.Denote by u0 and v0 the elements represented by the expressions we obtain bydeleting all the letters t1 in u and v. Then u � v if and only if either- v(t1) = u(t1) and u0 � v0; or- (v(t1); u(t1); u(t2); u(tj)) = (2; 1; 0; 0) and there existsw 2 fiL;t2(u0); iR;t2(u0); iL;tj (u0); iR;tj (u0)g suh that w � v0: �2.5 Kazhdan-Lusztig elementsConsider the basis C of the Heke algebra H assoiated to a Coxeter system(W;S) appearing in Theorems 0.5.4. In this setion we ompute those Kazhdan-Lusztig elements whih are indexed by Boolean elements in any linear Coxetersystem. For any expression x = si1 : : : sir , we set C(x) := Csi1 : : : Csir .First we treat the aseW = S(n+1). If x is a subword of s1 : : : sn�1snsn�1 : : : s1suh that x(sk) = 2 and x(sk+1) = 1, we denote by Ck(x) the element weobtain from C(x) by deleting the fator Csk+1 and one of the two fators Csk(by Proposition 0.5.5, it is easy to see that it does not matter whih one). Weextend this notation to CK(x), for any K � [n℄, making the same deletions forevery k 2 K.



2.5 Kazhdan-Lusztig elements 59Theorem 2.5.1 Let w 2 S(n+1) be a Boolean element. Fix a redued expres-sion w of w whih is a subword of s1 : : : sn : : : s1 and let V = fk 2 [n℄ : wk =2; wk+1 = 1g. Then: Cw = XK�V (�1)jKjCK(w):Proof. We use the reursive property of Proposition 0.5.5 applied to s1.If w1 = 1, and if we assume that the fator s1 is on the left in w, then Cw =Cs1Cs1w beause s1 6� s1w.If w1 = 2, neessarily w2 6= 0. Fix a redued expression z, whih is a subword ofs1w, for any element z in fz � s1w : s1 2 DL(z)g. Then z has a fator s1 on theright and, by Lemma 1.1.1, z(s2) = 0. Hene, by Corollary 2.4.1, �(z; s1w) 6= 0if and only if l(z; s1w) = 1, that is to say if and only if s2z = s1w. This meansthat the sum is nonzero if and only if w2 = 1, and, assuming that w has only onefator s2 on the left, we have Cw = Cs1Cs1w � Cs2s1w. Applying the reursiveproperty in its right version, we get:Cw = Cs1Cs1ws1Cs1 � Cs2s1ws1Cs1 :The result follows by iterating this proedure. �As a orollary, we have the following nie fatorization.Corollary 2.5.2 Let w 2 S(n + 1) be a Boolean element. Fix a redued ex-pression w of w whih is a subword of s1 : : : sn : : : s1 and let V 0 = V +1 = fk 2[n℄ : wk�1 = 2; wk = 1g. Then Cw is obtained from C(w) by hanging the fatorCsk to [Csk � (q 12 + q� 12 )�1Ce℄ for all k 2 V 0.Proof. The assertion follows by the multipliation rule of Proposition 0.5.5. �Example 5 Let w = s1s2s3s5s4s3s1 2 S(6). Then V = f1; 3g andCw = Cs1Cs2Cs3Cs5Cs4Cs3Cs1�Cs3Cs5Cs4Cs3Cs1�Cs1Cs2Cs3Cs5Cs1+Cs3Cs5Cs1 ;while V 0 = f2; 4g and we obtain the fatorization:Cw = Cs1 [Cs2 � (q 12 + q� 12 )�1Ce℄Cs3Cs5 [Cs4 � (q 12 + q� 12 )�1Ce℄Cs3Cs1 :Now we treat the ase of a stritly linear Coxeter system (W;S). Let t 2 T (W )be a Boolean re�etion with Boolean expression t = t1 : : : tn�1tntn�1 : : : t1 that



60 Chapter 2. R-polynomials and Kazhdan-Lusztig polynomialswe an assume equal tosasa�1 : : : si+1 sbsb+1 : : : si�1sisi�1 : : : sb+1sb si+1 : : : sa�1saby Proposition 1.1.4. Suppose that tj is si+1. As before, if x is a subword oft1 : : : tn�1tntn�1 : : : t1 suh that x(tk) = 2 and x has only one fator tk0 , k0 > k,that does not ommute with tk (tk0 = tk+1, if k 6= j, tk0 = tn, if k = j), wedenote by Ck(x) the element we obtain from C(x) by deleting the fator Ctk0and one of the two fators Ctk . We extend this notation to CK(x), for anyK � [n℄, making the same deletions for every k 2 K. Keeping these notations,we have the following.Theorem 2.5.3 Let (W;S = fs1; : : : ; smg) be a stritly linear Coxeter sys-tem, w 2 W , w � t. Fix a redued expression w of w whih is a subword oft1 : : : tn : : : t1, and let V 0 = fk 2 [n℄ n fjg : w(tk) = 2; w(tk+1) = 1g andV = ( V 0 [ fjg if w(tj) = 2, w(tn�1) 6= 2 ,V 0 otherwise.Then Cw = XK�V (�1)jKjCK(w):Proof. The proof of Theorem 2.5.1 holds replaing s1 with t1, exept whent1 = tj . Let us treat this ase.If w(tj) = 1, and if we assume that the fator tj is on the left in w, thenCw = CtjCtjw beause tj 6� tjw.If w(tj) = 2, neessarily w(tn) = 1. Fix a redued expression z, whih is asubword of tjw, for any element z in fz � tjw : tj 2 DL(z)g. Then z has afator tj on the right and, by Lemma 1.1.1, z(tn) = 0. Hene, by Corollary 2.4.2,�(z; tjw) 6= 0 if and only if l(z; tjw) = 1, that is to say if and only if z is obtainfrom tjw by deleting the fator tn. Suh expression z would be redued only ifw(tn�1) 6= 2. In this ase, we have Cw = CtjCtjw �Cz . Applying the reursiveproperty in its right version, we get:Cw = CtjCtjwtjCtj � CztjCtj :The assertion follows by iteration. �Theorem 2.5.4 Let (W;S = fs1; : : : ; smg) be a non-stritly linear Coxeter sys-



2.6 Poinaré polynomials 61tem, t 2 T (W ) be a Boolean re�etion. Let w 2 W , w � t be suh that si � wfor all i 2 [m℄. Fix a Boolean expression t = t1 : : : tm : : : t1 of the type of Propo-sition 1.1.5 and a redued expression w of w whih is a subword of t. ThenCw =8><>: Ct1Cw0Ct1 ; if w(t1) = 2,Ct1Cw0 ; if w has only a fator t1 at the leftmost plae,Cw0Ct1 ; if w has only a fator t1 at the rightmost plae,where w0 is the element represented by the expression we obtain from w by eras-ing all the fators t1. Hene Cw0 an be omputed as in Theorem 2.5.3.Proof. We use the reursive property of Proposition 0.5.5 applied to t1.If w(t1) = 1, and if we assume that the fator t1 is on the left, then Cw = Ct1Ct1wbeause t1 6� t1w.Let w(t1) = 2. Suppose that tj is, together with t2, the only other generatorthat does not ommute with t1. Fix a redued expression z, whih is a subwordof t1w, for any element z in fz � t1w : t1 2 DL(z)g. Neessarily, z has a fatort1 on the right and, by Lemma 1.1.1, z(ti) = 0 for i = 2; j. Hene l(z; t1w) > 1and �(z; t1w) 6= 0 by Corollary 2.4.3. So Cw = Ct1Ct1w. Applying the reursiveproperty of Proposition 0.5.5 in its right version, we getCw = Ct1Ct1wt1Ct1 ;and the assertion is proved. �2.6 Poinaré polynomialsGiven v 2 W , de�ne Fv(q) :=Pu�v ql(u)Pu;v(q). It is known that, if W is anyWeyl or a�ne Weyl group, Fv(q) is the intersetion homology Poinaré polyno-mial of the Shubert variety indexed by v (see [41℄). In this setion, we want toompute these polynomials when W is a linear Coxeter system and v 2 W is aBoolean element.First let us do this omputation for W = S(n + 1), where we treat theBoolean elements in terms of n-Boolean sequenes as in Setion 1.2. Let usrestrit the domain of � to the interval [e; v℄. Given any Boolean sequene



62 Chapter 2. R-polynomials and Kazhdan-Lusztig polynomialsu = (ui; : : : ; un) � �(v) in the omponent-wise partial order, we de�nen(u; �(v)) := jfi 2 [n� 1℄ : vi = 2; ui = 1; ui+1 6= 0gj;b(u; �(v)) := jfi 2 [n� 1℄ : vi = 2; vi+1 = 2; ui+1 = 0gj:With these notations, ��1j[e;v℄(u) = 2n(u;�(v));and, by Theorem 2.2.1,Fv(q) = Xu��(v) ql(u)(1 + q)b(u;�(v))2n(u;�(v)):We have the following theorem.Theorem 2.6.1 Let v 2 S(n+ 1) be a Boolean element. ThenFv(q) = (1 + q)l(v)�2f(v)(1 + q + q2)f(v);where f(v) is the number of ourrenes of the pattern j2; 1j in the sequene�(v).Proof. We proeed by indution on l(v). When not spei�ed, a sequene ismeant to be Boolean, and we write v instead of �(v) to simplify notation.We distinguish 2 ases.1) v1 = 1.If we split the sum into two sums aording as to whether u1 = 0 or u1 = 1, weobtain:Fv(q) = Xu�v[2℄ ql(u)(1 + q)b(u;v)2n(u;v) + Xu�v : u1=1 ql(u)(1 + q)b(u;v)2n(u;v);where, for all i 2 [n℄, v[i℄j = ( vj ; if j � i,0; otherwise.Note that if v is Boolean, so is v[i℄ for all i.Clearly b(u; v) = b(u; v[2℄) and n(u; v) = n(u; v[2℄). Sending u to u[2℄, we obtaina bijetion between the sequenes u � v suh that u1 = 1 and the sequenes u �v[2℄. Sine l(u) = l(u[2℄) + 1, b(u; v) = b(u[2℄; v[2℄) and n(u; v) = n(u[2℄; v[2℄),



2.6 Poinaré polynomials 63we get:Fv(q) = Xu�v[2℄ ql(u)(1 + q)b(u;v[2℄)2n(u;v[2℄) + Xu�v[2℄ ql(u)+1(1 + q)b(u;v[2℄)2n(u;v[2℄);that is Fv(q) = (1 + q)Fv[2℄(q), and we onlude by indution.2) v1 = 2.Splitting the sum, we get:Fv(q) = Xu�v : u1 6=2 ql(u)(1 + q)b(u;v)2n(u;v) + Xu�v : u1=2 ql(u)(1 + q)b(u;v)2n(u;v):Being u1 6= 2, the �rst sum is over all the sequenes u � v0, wherev0j = ( vj ; if j 6= 1,1; if j = 1,and b(u; v) = ( b(u; v0) + 1; if v2 = 2 and u2 = 0,b(u; v0); otherwise,n(u; v) = ( n(u; v0) + 1; if u1 = 1 and u2 6= 0,n(u; v0); otherwise.As to the seond sum, there is a bijetion between the sequenes u � v suhthat u1 = 2 and the sequenes u � v0 suh that u1 = 1 and u2 6= 0. Thisbijetion sends u to u0 (similar de�nition as for v0). Clearly l(u) = l(u0) + 1,b(u; v) = b(u0; v0) and n(u; v) = n(u0; v0).Then, if v2 = 2, ombining all these fats we obtain:Fv(q) = (1 + q) Xu�v0 : u2=0 ql(u)(1 + q)b(u;v0)2n(u;v0)+ 2 Xu�v0 : u1=1 u2 6=0 ql(u)(1 + q)b(u;v0)2n(u;v0)+ Xu�v0 : u1=0 u2 6=0 ql(u)(1 + q)b(u;v0)2n(u;v0)+ q Xu�v0 : u1=1 u2 6=0 ql(u)(1 + q)b(u;v0)2n(u;v0):



64 Chapter 2. R-polynomials and Kazhdan-Lusztig polynomialsBy an easy bijetion sending u to u[2℄,Xu�v0 : u1=1 : u2 6=0ql(u)(1+ q)b(u;v0)2n(u;v0) = q Xu�v0 : u1=0 u2 6=0ql(u)(1+ q)b(u;v0)2n(u;v0)and hene we obtain Fv(q) = (1+q)Fv0(q) = (1+q)2Fv[2℄; where the last equalityfollows by ase 1). So we onlude by indution.On the other hand, if v2 = 1, we obtainFv(q) = (1 + q)2Fv[2℄ � q Xu�v0 : u2=0 ql(u)(1 + q)b(u;v0)2n(u;v0)Now, by ase 1), Fv[2℄ = (1 + q)Fv[3℄, whileXu�v0 : u2=0 ql(u)(1 + q)b(u;v0)2n(u;v0) = Xu�v0 : u1=0 : u2=0 ql(u)(1 + q)b(u;v0)2n(u;v0)+ Xu�v0 : u1=1 : u2=0 ql(u)(1 + q)b(u;v0)2n(u;v0)whih is equal to Fv[3℄ + qFv[3℄.Hene:Fv(q) = (1 + q)3Fv[3℄ � (q + q2)Fv[3℄(q) = (1 + q)(1 + q + q2)Fv[3℄;and we onlude by indution. �Example 6 Let v 2 S(8), v = s1s2s4s5s6s7s5s4s3s2. Then the Boolean se-quene assoiated to v is (1; 2; 1; 2; 2; 1; 1), f(v) = 2 and Fv(q) = (1+q)l(v)�4(1+q + q2)2.The following two theorems treat respetively the ase of a stritly and of anon-stritly linear Coxeter system.Theorem 2.6.2 Let (W;S = fs1; : : : ; smg) be a stritly linear Coxeter system,t 2 W a Boolean re�etion and v 2W , v � t. Then Fv(q) = F (v)(q), where  is as in Lemma 2.2.2 and F (v)(q) an be omputed as in Theorem 2.6.1.Proof. Clear sine  : [e; v℄W ! [e;  (v)℄S(m+1) is an isomorphism of posets



2.6 Poinaré polynomials 65preserving the length and Pu;v(q) = P (u); (v)(q) for all u 2 [e; v℄W by Theo-rem 2.2.3. �Theorem 2.6.3 Let (W;S = fs1; : : : ; smg) be a non-stritly linear Coxeter sys-tem, t 2 T (W ) a Boolean re�etion that we an assume suh that si � t for alli 2 [m℄, and v 2 W , v � t. Fix a Boolean expression t = t1 : : : tn�1tntn�1 : : : t1of t of the type shown in Proposition 1.1.5 and a redued expression v of v whihis a subword of t. Then Fv(q) = (1 + q)v(t1)Fv0(q), where v0 is the element ofW represented by the expression we obtain from v by deleting all the letters t1and Fv0(q) an be omputed as in Theorem 2.6.2.Proof. Suppose that tj is, together with t2, the only other generator that doesnot ommute with t1, and �x, for any element u � v, an expression u of u whihis a subword of v. Let us denote by u0 the element represented by the expressionwe obtain from u by deleting all the letters t1. We distinguish 2 ases.1) v(t1) = 1.If we split the sum into two sums, by Theorem 2.2.4, we obtain:Fv(q) = Xu(t1)=1 ql(u)Pu0;v0 + Xu(t1)=0 ql(u)Pu;v0 :Sine in the �rst sum l(u) = l(u0) + 1 and sine there is a bijetion between thetwo sets over whih we are summing, we get:Fv(q) = (1 + q)Fv0(q):2) v(t1) = 2Splitting the sum, we obtain:Fv(q) = Xu(t1)=2 ql(u)Pu;v + Xu(t1)=1 ql(u)Pu;v + Xu(t1)=0 ql(u)Pu;v :After some simpli�ations by means of Theorem 2.2.4 and of natural maps, the�rst sum gets equal to: X(u0(t2);u0(tj))6=(0;0) ql(u0)+2Pu0;v0 ;



66 Chapter 2. R-polynomials and Kazhdan-Lusztig polynomialsthe seond to:2 X(u0(t2);u0(tj))6=(0;0) ql(u0)+1Pu0;v0 + (1 + q) X(u0(t2);u0(tj))=(0;0) ql(u0)+1Pu0;v0 ;(the �2� omes out from the fat that the map is 2 to 1), the third toX(u0(t2);u0(tj))6=(0;0) ql(u0)Pu0;v0 + (1 + q) X(u0(t2);u0(tj))=(0;0) ql(u0)Pu0;v0 :By adding the summands, we �nally obtain:Fv(q) = (1 + q)2Fv0 ;and the assertion is proved. �Remark. The polynomials Fv(q) omputed in this setion are all symmetriand unimodal. For Weyl or a�ne Weyl groups W , this is a onsequene of thefat that (middle perversity) intersetion ohomology satis�es Poinaré dualityand the �Hard Lefshetz Theorem�. So this result is onsistent with the ideathat there may be geometri objets assoiated to any Coxeter group analogousto Shubert varieties.



Chapter 3Paraboli R-polynomials andKazhdan-Lusztig polynomialsThis hapter deals onretely with the omputation of the paraboli analoguesof the Kazhdan-Lusztig and R-polynomials for the symmetri group. We givelosed ombinatorial produt formulae for the paraboli R-polynomials of bothtypes q and �1, and for the paraboli Kazhdan-Lusztig polynomials of type q.These formulae are valid in the ase that the indexing permutations are Boolean,and with no restritions on the paraboli subgroupWJ . These paraboli Kazhdan-Lusztig and R-polynomials turn out to depend on the number of ourrenes ofertain sub-tableaux in a �xed tableau assoiated to the indexing permutations.Throughout this hapter, we make use of the notion of the maps �R(u; v) and�L(u; v) we introdued in Setion 1.2.3.1 Paraboli R-polynomialsLet u; v 2 S(n + 1)J , u � v, be two Boolean permutations. In this setionwe give a losed ombinatorial formula for the paraboli R-polynomials of bothtypes q and �1 indexed by u and v. In this formula, there are no restritionson the subset J of S.Let (u; v) be the right Boolean expressions of (u; v) and onsider �R(u; v).First we need the following proposition.Proposition 3.1.1 Suppose that u; v � s1s2 � � � sn. Then67



68 Chapter 3. Paraboli R-polynomials and Kazhdan-Lusztig polynomialsRJ;qu;v(q) = (q � 1)l(u;v)�E(u;v)(q � 1� x)E(u;v)where E(u; v) = j 0 0� 1ldj:Proof. We proeed by indution on n, the ase n = 1 being lear. If v �s1s2 � � � sn�1, then we onlude by indution.So assume that sn is the rightmost letter of v (equivalently assume that vn = 1l).Apply 3) of Theorem 0.5.11 to sn. If un = 1l, then RJ;qu;v(q) = RJ;qusn;vsn(q)and we onlude by indution. If un = 0, then s =2 DR(u). By Table 1.2,usn =2 S(n + 1)J if and only if n 2 J and un�1 = 0. In this ase RJ;qu;v(q) =(q � 1� x)RJ;qu;vsn(q): Otherwise, usn 2 S(n+ 1)J andRJ;qu;v(q) = (q � 1)RJ;qu;vsn(q) + qRJ;qusn;vsn(q):But usn 6� vsn beause sn � usn and sn 6� vsn. So RJ;qu;v(q) = (q � 1)RJ;qu;vsn(q)and the assertion follows by indution. �Note that Proposition 3.1.1, whih is stated for the symmetri group, an beeasily generalized to any Coxeter group W .Now we want to assoiate to (u; v) the pair of elements we obtain from theright Boolean expressions (u; v) of (u; v) by deleting all the letters on the right.Preisely, we de�ne a map � : f(x; y) 2 [e; (1; n+ 1)℄� [e; (1; n+ 1)℄ : x � yg !f(x; y) 2 [e; s1 � � � sn℄� [e; s1 � � � sn℄ : x � yg as follows. Given (x; y) in the range,we obtain �R(�(x; y)) from �R(x; y) by hanging all 2 to 1l and all 1r to 0 .In partiular, � does not depend on J .For example, if �R(x; y) = 0 0 0 0 0 0 1l 2 1r 1l2 2 2 2 2 1r 1l 2 2 1ld d� ��� ���dthen �R(�(x; y)) = 0 0 0 0 0 0 1l 1l 0 1l1l 1l 1l 1l 1l 0 1l 1l 1l 1ld d� ��� ���d :



3.1 Paraboli R-polynomials 69For m � 1, letAm(u; v) := jfi 2 J : [i+ 1; i+m� 1℄ � J;(vi; vi+1; :::; vi+m�1) = (2; 2; :::; 2);(ui�1; ui; :::; ui+m) = (1l; 0; :::; 0) andeither i+m =2 J or (vi+m; ui+m+1) = (1r; 6= 0)gj+jfi =2 J : [i+ 1; i+m� 1℄ � J;(vi; vi+1; :::; vi+m�1) = (2; 2; :::; 2);(ui; ui+1; :::; ui+m) = (0; 0; :::; 0) andeither i+m =2 J or (vi+m; ui+m+1) = (1r; 6= 0)gj:Equivalently,Am(u; v) = j1l 0 0 � � � 0 0� 2 2 � � � 2 �d d d� � � �j+ j1l 0 0 � � � 0 0 60� 2 2 � � � 2 1r �d d d� � � d j+j 0 0 0 � � � 0 02 2 2 � � � 2 �d d d� � �� �j+ j 0 0 0 � � � 0 0 602 2 2 � � � 2 1r �d d d� � �� d jwhere the olumns of type 02d are exatly m in the �rst two tableaux, m� 1 inthe other two.Furthermore letB(u; v) := j1l 0 0� 1r �d j+ j 0 061r �d j+ j 01r�j+ j 0 062 � j+ j1l �2 ��j+ j1l 22 �dj+ j1l 1r 062 � �d j;C(u; v) := j 0 0� 1ldj+ j1r 0� 1ldj+ j 0 0� 2dj+ j1r 0� 2dj+ j 0 1r� 2dj+ j1r1r� 2djand �nally Mu;v(q) := 1Ym=1 �(�x)m+1q � 1 + (q � 1� x)m�Am :



70 Chapter 3. Paraboli R-polynomials and Kazhdan-Lusztig polynomialsThen the polynomial RJ;xu;v(q) an be omputed through the following produtformula. For notational onveniene, here we drop the dependene on (u; v)so that l := l(u; v), l(�) := l(�(u; v)), Am := Am(u; v), B := B(u; v), andC := C(u; v).Theorem 3.1.2 The paraboli R-polynomial RJ;xu;v(q) is equal to(q � 1)B(q � 1� x)l�l(�)�PmAm�BMu;v(q)RJ;x�(u;v)(q); (3.1)where the polynomial RJ;x�(u;v)(q) an be omputed using the formula in Proposi-tion 3.1.1.Equivalently, RJ;xu;v(q) is equal to(q � 1)B+l(�)�C(q � 1� x)l�l(�)�PmAm�B+CMu;v(q): (3.2)Proof. Throughout this proof we use Tits' Word Theorem (Theorem 0.3.6) aswell as Lemma 1.1.2 without expliit mention.Reall that (u; v) are the right Boolean expressions of (u; v). First of all,the equivalene of 3.1 and 3.2 follows by Proposition 3.1.1. In fat RJ;x�(u;v)(q)has only fators (q� 1� x) and (q � 1), and C(u; v) ounts the sub-tableaux of�R(u; v) that give rise to sub-tableaux of type 0 0� 1ld in �R(�(u; v)).Let us prove 3.1 by indution on l(v). If v � s1s2 � � � sn, we are done beause�(u; v) = (u; v), B(u; v) = 0 and Am(u; v) = 0 for all m � 1.So we may assume that v 6� s1s2 � � � sn. Let si be the letter at the rightmostplae in v and use the reursive property of Theorem 0.5.11 applied to si. Caseby ase, we investigate the relationship between the polynomial RJ;xu;v(q) and thepolynomial RJ;xu0;v0(q), where u0 and v0 are the elements represented by u andv with the letters si at the rightmost plae (if any) deleted. So v0 = vsi andu0 = u or usi.Let us ollet the ases that are analogous.If both v and u have a letter si at the rightmost plae, then RJ;xu;v(q) = RJ;xu0;v0(q),and we onlude by indution.Using Table 1.2, it is not hard to hek that u � usi 2 W J and usi 6� vsipreisely in the ases given in the following table, where empty spae stands forany entry.



3.1 Paraboli R-polynomials 71vi�1ui�1 viui vi+1ui+1 vi+2ui+2 i 2 J i+ 1 2 J1l 1r0 0 yes1r0 6= 0 yes1r0 no20 6= 021l no21l 2 yes21l 1r 6= 0 yesIn all these ases we have RJ;xu;v(q) = (q�1)RJ;xu0;v0(q), while B(u; v) = B(u0; v0)+1and Am(u; v) = Am(u0; v0) for all m � 1. Hene the result follows by indution.Similarly, u � usi =2W J preisely in the ases given in the following tablevi�1ui�1 viui vi+1ui+1 vi+2ui+2 i 2 J i+ 1 2 J0 1r0 0 yes0 20 0 yes21l 1l no yes21l 1r 0 no yes1l 21l 1l yes yes1l 21l 1r 0 yes yes



72 Chapter 3. Paraboli R-polynomials and Kazhdan-Lusztig polynomialswhere RJ;xu;v(q) = (q � 1� x)RJ;xu0 ;v0(q), while B(u; v) = B(u0; v0) and Am(u; v) =Am(u0; v0) for all m � 1. So the result follows by indution.By Table1.2, we have that u � usi 2 W J and usi � vsi exatly in thefollowing two ases.Case i) For somem � 1, (vi; vi+1; :::; vi+m�1) = (2; 2; :::; 2), (ui�1; ui; :::; ui+m) =(1l; 0; :::; 0), [i; i+m�1℄ � J and either i+m =2 J or, if i+m 2 J , (vi+m; ui+m+1) 6=(2; 0).First of all, let us treat the ase m = 1. By Theorem 0.5.11 we haveRJ;xu;v(q) = (q � 1)RJ;xu;vsi(q) + qRJ;xusi;vsi(q):As l(vsi) = l(v)� 1, we an use the indution hypothesis and �ndRJ;xu;vsi(q) = 8>>>><>>>>: (q � 1)RJ;xusi;vsi(q); if i+ 1 =2 J ,(q � 1)RJ;xusi;vsi(q); if i+ 1 2 J and vi+1 = 1r, ui+2 6= 0,(q � 1� x)RJ;xusi ;vsi(q); if i+ 1 2 J and vi+1 2 f2; 1lg,(q � 1� x)RJ;xusi ;vsi(q); if i+ 1 2 J and (vi+1; ui+2) = (1r; 0),and heneRJ;xu;v(q) = 8>>>>><>>>>>: � q2�q+1q�1 �RJ;xu;vsi(q); if i+ 1 =2 J ,� q2�q+1q�1 �RJ;xu;vsi(q); if i+ 1 2 J and vi+1 = 1r, ui+2 6= 0,(q � 1� x)RJ;xu;vsi (q); if i+ 1 2 J and vi+1 2 f2; 1lg,(q � 1� x)RJ;xu;vsi (q); if i+ 1 2 J and (vi+1; ui+2) = (1r; 0),(note that (q � 1) + qq�1�x = (q � 1� x) for x 2 f�1; qg).Now, for all m � 1, we want to investigate the relationship between RJ;xu;v(q)and RJ;xu;vsi���si+m�1(q). A priori, RJ;xu;v(q)=RJ;xu;vsi���si+m�1(q) ould be funtion ofall the entries in �R(u; v) and we abuse notation by settingf(m) = RJ;xu;v(q)RJ;xu;vsi���si+m�1(q) :We laim that f(m) only depends on m, vi+m, ui+m+1 and on whether i+mis in J or not. We prove the laim by indution on m. The laim is true for



3.1 Paraboli R-polynomials 73m = 1 sine we have just proved thatf(1) = 8>>>>><>>>>>: � q2�q+1q�1 � ; if i+ 1 =2 J ,� q2�q+1q�1 � ; if i+ 1 2 J and vi+1 = 1r, ui+2 6= 0,(q � 1� x); if i+ 1 2 J and vi+1 2 f2; 1lg,(q � 1� x); if i+ 1 2 J and (vi+1; ui+2) = (1r; 0). (3.3)If m > 1, by Theorem 0.5.11,RJ;xu;v(q) = (q � 1)RJ;xu;vsi(q) + qRJ;xusi;vsi(q);by the indution hypothesis on 3.1RJ;xu;vsi(q) = (q � 1� x)m�1RJ;xu;vsi���si+m�1(q);and by the indution hypothesis on the laim we an writeRJ;xusi;vsi(q) = f(m� 1)RJ;xusi;vsi���si+m�1(q):By indution hypothesis on 3.1, RJ;xu;vsi���si+m�1(q) = (q�1�x)RJ;xusi;vsi���si+m�1(q),and hene f(m) satis�es the following reursive propertyf(m) = (q � 1)(q � 1� x)m�1 + qq � 1� xf(m� 1) (3.4)for any hoie of vi+m, ui+m+1 and J . This prove the laim.Now we an onlude thatf(m) =8>>>><>>>>: (�x)m+1q�1 + (q � 1� x)m; if i+m =2 J ,(�x)m+1q�1 + (q � 1� x)m; if i+m 2 J and vi+m = 1r, ui+m+1 6= 0,(q � 1� x)m; if i+m 2 J and vi+m 2 f2; 1lg,(q � 1� x)m; if i+m 2 J and (vi+m; ui+m+1) = (1r; 0).In fat, for x 2 f�1; xg, this funtion veri�es both the reursive property of 3.4and the initial onditions of 3.3.Hene the result follows by indution.Case ii) For somem � 1, (vi; vi+1; :::; vi+m�1) = (2; 2; :::; 2), (ui; ui+1; :::; ui+m) =(0; 0; :::; 0), i =2 J , [i+ 1; i+m� 1℄ � J and either i+m =2 J or, if i+m 2 J ,



74 Chapter 3. Paraboli R-polynomials and Kazhdan-Lusztig polynomials(vi+m; ui+m+1) 6= (2; 0).As in Case i), we an show by indution that RJ;xu;v(q)=RJ;xu;vsi���si+m�1(q) onlydepends on m, vi+m, ui+m+1 and on whether i +m is in J or not. We abusenotation by setting g(m) = RJ;xu;v(q)RJ;xu;vsi���si+m�1(q) :By Theorem 0.5.11 and the indution hypothesis on 3.1, we haveRJ;xu;v(q) = (q � 1)RJ;xu;vsi(q) + qRJ;xusi;vsi(q)= (q � 1)(q � 1� x)m�1RJ;xu;vsi���si+m�1(q)+ qf(m� 1)RJ;xusi;vsi���si+m�1(q)where f(m) is as above. Now, by indution hypothesis on 3.1,RJ;xu;vsi���si+m�1(q) = (q � 1� x)RJ;xusi;vsi���si+m�1(q)and hene we haveg(m) = (q � 1)(q � 1� x)m�1 + qq � 1� xf(m� 1): (3.5)for any hoie of vi+m, ui+m+1 and J .We laim that g(m) = f(m) for all m. By 3.4 and 3.5 it su�es to prove thatg(1) = f(1).So assume m = 1. By Theorem 0.5.11, we haveRJ;xu;v(q) = (q � 1)RJ;xu;vsi(q) + qRJ;xusi;vsi(q)and by indution we haveRJ;xu;vsi(q) = 8>>>><>>>>: (q � 1)RJ;xusi;vsi(q); if i+ 1 =2 J ,(q � 1)RJ;xusi;vsi(q); if i+ 1 2 J and vi+1 = 1r, ui+2 6= 0,(q � 1� x)RJ;xusi ;vsi(q); if i+ 1 2 J and vi+1 2 f2; 1lg,(q � 1� x)RJ;xusi ;vsi(q); if i+ 1 2 J and (vi+1; ui+2) = (1r; 0),obtaining the same values of Case i). So g(1) = f(1) and g(m) = f(m) for allm � 1.This onludes the indution step and hene the proof. �



3.1 Paraboli R-polynomials 75Example 7 Let us ompute the R-polynomial RJ;xu;v(q) of S12, where the Booleanpermutations v and u, and the subset J of S are as follows:v = s1s2s3s4s5s6s8s9s11s10s9s8s7s6s4s3s2u = s1s6s11s7J = f2; 3; 4; 9; 10gBy Table 1.2, the permutations u and v are in SJ12. As the given expressionsare right Boolean, we have�R(u; v) = 1l 0 0 0 0 1l 1r 0 0 0 1l1l 2 2 2 1l 2 1r 2 2 1r 1ld d d d d� ���� �and �R(�(u; v)) = 1l 0 0 0 0 1l 0 0 0 0 1l1l 1l 1l 1l 1l 1l 0 1l 1l 0 1ld d d d d� ���� � :Now l(u; v) = 13, l(�(u; v)) = 6 andA2(u; v) = jf8gj = 1;A3(u; v) = jf2gj = 1;Am(u; v) = 0 for all m =2 f2; 3g:Hene Mu;v(q) = � (�x)3q � 1 + (q � 1� x)2�� (�x)4q � 1 + (q � 1� x)3� :Furthermore B(u; v) = 2with the ontributions exatly given byj 0 061r �d j = 1; j1l �2 ��j = 1:



76 Chapter 3. Paraboli R-polynomials and Kazhdan-Lusztig polynomialsIf we want to use 3.1, we have to ompute RJ;x�(u;v)(q). By Proposition 3.1.1,RJ;x�(u;v)(q) = (q � 1)3(q � 1� x)3;sine E(�(u; v)) = 3.If we want to use 3.2, we have to ompute C(u; v) and we obtainC(u; v) = 3with the ontributions exatly given byj 0 0� 2dj = 3:Note that E(�(u; v)) = C(u; v). This is not by hane.Using one of the two equivalent formulae 3.1 and 3.2 we obtainRJ;xu;v(q) = (q � 1)5(q � 1� x)3 � (�x)3q � 1 + (q � 1� x)2� �(�x)4q � 1 + (q � 1� x)3� ;that isRJ;xu;v(q) = ( q3(q � 1)3(q3 � q2 + 1)(q4 � q3 + 1); if x = �1.(q � 1)3(q3 � q + 1)(q4 � q + 1); if x = q.Remarks.- Theorem 3.1.2, as stated, fails for the left Boolean expressions.- The result in Theorem 3.1.2 for J = ; (ordinary R-polynomials) impliesTheorem 2.1.1.3.2 Paraboli Kazhdan-Lusztig polynomialsLet u; v 2 S(n + 1)J , u � v, be two Boolean permutations. In this setion wegive a losed ombinatorial formula for the paraboli Kazhdan-Lusztig polyno-mials of type q indexed by u and v. In this formula, there are no restritions onthe subset J of S.



3.2 Paraboli Kazhdan-Lusztig polynomials 77Let (u; v) be the left Boolean expressions of (u; v) and onsider �L(u; v). Westart with the following proposition.Proposition 3.2.1 Suppose that u; v � s1s2 � � � sn. ThenP J;qu;v (q) = ( 0; if E(u; v) > 0,1; otherwise.where E(u; v) = j 0 0� 1ldj as in Proposition 3.1.1.Proof. We proeed by indution on n, the ase n = 1 being lear. If v �s1s2 � � � sn�1, then we onlude by indution. So we may assume that sn is therightmost letter of v, or, equivalently, we may assume that vn = 1l. Let us applyTheorem 0.5.14 to sn. As sn 6� vsn, learly fw � vsn : wsn < wg = ;, andhene the sum on the right hand side of the reursive formula of Theorem 0.5.14is always empty.If un = 1l, then learly usn < u, and u 6� vsn sine sn � u but sn 6� vsn. Itfollows that ~P = P J;qusn;vsn(q). So we an onlude by indution.Suppose that un = 0. In this ase u < usn 6� vsn sine sn � usn but sn 6� vsn.If un�1 = 0 and n 2 J , then, by Table 1.2, usn =2 W J and hene ~P = 0 asdesired. Otherwise, usn 2 W J and ~P = P J;qu;vsn(q). So the assertion follows byindution. �Note that Proposition 3.2.1 an be generalized to any Coxeter group W .To simplify notation, we de�ne a map  : f(x; y) 2 [e; (1; n+1)℄� [e; (1; n+1)℄ : x � yg ! f(x; y) 2 [e; s1 � � � sn℄ � [e; s1 � � � sn℄ : x � yg as follows. Given(x; y) in the range, we obtain �L((x; y)) from �L(x; y) by the following steps:1. hange the leftmost sub-tableau of type 0 02 2� d to a sub-tableau of type 1l 01l 2d�(where � an be either d or �);2. if there are still sub-tableaux of type 0 02 2� d, go to step (1). Otherwise,hange all 2 to 1l and all 1r to 0 .



78 Chapter 3. Paraboli R-polynomials and Kazhdan-Lusztig polynomialsFor example, suppose that�L(x; y) = 0 0 0 0 0 0 1l 2 1r 1l2 2 2 2 2 1r 1l 2 2 1ld d� ��� ���d :After the following intermediate steps0 0 0 0 0 0 1l 2 1r 1l2 2 2 2 2 1r 1l 2 2 1ld d� ��� ���d#1l 0 0 0 0 0 1l 2 1r 1l1l 2 2 2 2 1r 1l 2 2 1ld d� ��� ���d#1l 1l 0 0 0 0 1l 2 1r 1l1l 1l 2 2 2 1r 1l 2 2 1ld d� ��� ���d#1l 1l 0 1l 0 0 1l 2 1r 1l1l 1l 2 1l 2 1r 1l 2 2 1ld d� ��� ���d#1l 1l 0 1l 0 0 1l 1l 0 1l1l 1l 1l 1l 1l 0 1l 1l 1l 1ld d� ��� ���d ;we obtain �L((x; y)) = 1l 1l 0 1l 0 0 1l 1l 0 1l1l 1l 1l 1l 1l 0 1l 1l 1l 1ld d d� � �����and so (x; y) = (s1s2s4s7s8s10; s1s2s3s4s5s7s8s9s10).



3.2 Paraboli Kazhdan-Lusztig polynomials 79Furthermore, we let a(u; v) = j � 02 2dj; b(u; v) = j � 02 2�j;and(u; v) = j1l 1l2 �dj+ j 0 0 0� 1r �d j+ j 0 0 0� 2 �d j+ j 0 062 2dj+ j 0 0� 1ldj+ j 0 1r� 2dj+ j1r1r� 2dj:We drop the (u; v) when no onfusion arises.Then the polynomial P J;qu;v (q) an be omputed through the following produtformula.Theorem 3.2.2 The paraboli Kazhdan-Lusztig polynomial P J;qu;v (q) satis�esP J;qu;v (q) = 8><>: 0; if j1l 1l2 �dj+ j 0 0 0� 1r �d j+ j 0 0 0� 2 �d j > 0qa(1 + q)bP J;q(u;v)(q); otherwise, (3.6)where the polynomial P J;q(u;v)(q) an be omputed as in Proposition 3.2.1.Equivalently, P J;qu;v (q) = ( 0; if  > 0;qa(1 + q)b; otherwise. (3.7)Proof. In this proof we use both Tits' Word Theorem (Theorem 0.3.6) andLemma 1.1.2 without expliit mention.Reall that (u; v) are the left Boolean expressions of (u; v). It is lear that 3.7is equivalent to 3.6 sine (u; v) is the number of the sub-tableaux nullifyingP J;xu;v (q) in 3.6 or nullifying P J;x(u;v)(q) by Proposition 3.2.1.Let us prove 3.6 by indution on l(v). If v � s1s2 � � � sn, we are done beause(u; v) = (u; v), a(u; v) = 0 and b(u; v) = 0. So assume v 6� s1s2 � � � sn. Let si bethe letter at the rightmost plae in v. The reursive property of Theorem 0.5.14applied to si givesP J;qu;v (q) = ~P � Xw2[u;vsi℄J : si2DR(w)�(w; vsi)q l(v)�l(w)2 P J;qu;w(q): (3.8)Let us proeed ase by ase.



80 Chapter 3. Paraboli R-polynomials and Kazhdan-Lusztig polynomialsSuppose �rst that �L(u; v) ontains one of the following two tableaux:: : :1l h 0 : : : 0 0 g� 2 2 2 f �d
: : :h 0 : : : 0 0 g2 2 2 f ��

where, in both ases, h 2 f1l; 0g, (f; g) 6= (2; 0), the olumn h2 is the i-th, andthe olumn 0f is the (i+m)-th. First of all, by Corollary 0.5.15, we an assumeh = 0 as si 2 DR(v) and u(si+1) = 0. We laim that, if m > 1, thenP J;qu;v (q) = qjAj(1 + q)m�2�jAjP J;qu0;v0(q)where A = fk 2 [i; i +m � 2℄ : k + 1 2 Jg, v0 = vsisi+1 � � � si+m�2 and u0 isrepresented by the expression we obtain by inserting sk to the left in u for allk 2 A. Let us prove the laim. For onveniene, we denote by vsi the expressionwe obtain from v by deleting the letter si at the rightmost plae. The sum in(3.8) gives no ontribution. In fat, let w be a redued expression of an elementw 2 fw � vsi : wsi < wg whih is a subword of vsi. Then w has a fator si onthe left and no fators si+1. Hene si+1 2 DR(vsi) nDR(w) and �(w; vsi) = 0by Corollary 0.5.15. Let us ompute the polynomial ~P . We have~P = qP J;qusi;vsi(q) + P J;qu;vsi (q) = ( qP J;qusi;vsi(q); if i+ 1 2 J ,(q + 1)P J;qu;vsi(q); if i+ 1 =2 J .In fat, if i+1 2 J , then si+1 2 DR(vsi) and u < usi+1 =2 W J . So, in this ase,P J;qu;vsi(q) = 0. If i+ 1 =2 J , by the indution hypothesis P J;qusi;vsi(q) = P J;qu;vsi(q).The laim follows by iterating this proedure.It remains to onsider the ase m = 1. Let w be a redued expression ofan element w 2 fw � vsi : wsi < wg whih is a subword of vsi. Then whas a fator si on the left and no fators si+1. In partiular, w(si) = 1 andw(si+1) = 0. Hene, by Corollary 2.4.1, we have that �(w; vsi) an be non-zeroonly if l(w; vsi) = 1 (f annot be 0 otherwise v would not be redued). Let usdistinguish the three ases: f = 2, f = 1r, f = 1l.If f = 2, the sum gives no ontribution beause l(w; vsi) > 1 for all possible w.



3.2 Paraboli Kazhdan-Lusztig polynomials 81By indution hypothesis,P J;qu;vsi (q) = ( 0; if i+ 1 2 J ,P J;qusi;vsi(q); if i+ 1 =2 J .and then ~P = ( qP J;qusi;vsi(q); if i+ 1 2 J ,(q + 1)P J;qu;vsi(q); if i+ 1 =2 J ,as in the ase m > 1.If f = 1r we have �(w; vsi) = ( 1; if w = vsisi+1,0; otherwise,and the sum ontribute exatly with one summand. HeneP J;qu;v (q) = qP J;qusi;vsi(q) + P J;qu;vsi(q)� qP J;qu;vsisi+1(q):By indution P J;qusi;vsi(q) = P J;qu;vsisi+1(q), thusP J;qu;v (q) = P J;qu;vsi(q):If f = 1l, we get that �(w; vsi) an be non-zero only if w is the element rep-resented by the expression we obtain from vsi by deleting the fator si+1. Wehave to see if this element w is in W J or not. By Table 1.2, w is not in W J ifand only if i+ 2 2 J and wi+2 2 f2; 1lg. But wi+2 = vi+2. SoP J;qu;v (q) = ( qP J;qusi;vsi(q) + P J;qu;vsi(q); if i+ 2 2 J and vi+2 = f2; 1lgqP J;qusi;vsi(q) + P J;qu;vsi(q)� qP J;qu;w(q); otherwise.By indution hypothesis, P J;qusi;vsi(q) = P J;qu;vsi(q) = P J;qu;w(q). HeneP J;qu;v (q) = ( (q + 1)P J;qu;vsi (q); if i+ 2 2 J and vi+2 2 f2; ; 1lgP J;qu;vsi(q); otherwise.We laim that P J;qu;v (q) = P J;qu;vsi(q) in any ase, sine, if i + 2 2 J and vi+2 2f2; 1lg, then P J;qu;vsi (q) = 0. In fat, the restritions on vi+2 imply g 2 f2; 1l; 0g,and i + 2 2 J fores g = 0 sine u 2 W J . Hene by indution hypothesis,



82 Chapter 3. Paraboli R-polynomials and Kazhdan-Lusztig polynomialsP J;qu;vsi(q) = 0 sine olumns i-th and (i + 1)-th of �L(u; vsi) form either atableau of type 0 026 2d or a tableau of type 0 026 1ld.So the assertion follows by indution.Now suppose that �L(u; v) ontains one of the following tableaux:1l 1l2 �d0 0 0� 1r �d0 0 0� 2 �dwhere the last olumn is the (i + 1)-th. Clearly si 2 DR(v) n DR(u). Butusi =2W J , and then P J;qu;v (q) = 0.Finally, in all the remaining ases, we haveP J;qu;v (q) = P J;qu0;v0(q);where v0 = vsi and u0 is the element represented by the expression we obtainfrom u by deleting the letter si at the rightmostplae, if any. The proof of thisfat uses the same tehnique as above, but is muh simpler, and it is left to thereader.This onludes the indution step and we are done. �Example 8 Let us ompute the Kazhdan-Lusztig polynomial P J;xu;v (q) of S10,where the Boolean permutations v and u, and the subset J of S are as follows:v = s1s2s3s4s5s7s8s9s8s7s6s5s4s2s1u = s1s4s9s6J = f2; 8g:By Table 1.2, the permutations u and v are in SJ10. As the given expressions



3.2 Paraboli Kazhdan-Lusztig polynomials 83are left Boolean, we have�L(u; v) = 1l 0 0 1l 0 1r 0 0 1l2 2 1l 2 2 1r 2 2 1ld���� d� � � :Therefore a(u; v) = 2;b(u; v) = 1;(u; v) = 0;and using 3.7 we obtain P J;qu;v (q) = q2(1 + q):Remarks.- Theorem 3.2.2, as stated, fails for the right Boolean expressions.- The result in Theorem 3.2.2 for J = ; (ordinary Kazhdan-Lusztig poly-nomials) implies Theorem 2.2.1.We expliitly state the following easy onsequene of Theorem 3.2.2. Thisproves, in the ase of Boolean permutations, a onjeture of Brenti ([18℄).Corollary 3.2.3 Let I � J . ThenP J;qu;v (q) � P I;qu;v (q)in the oe�ient-wise omparison.Proof. Straightforward by the analisys of (3.6). �
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Chapter 4Proof of Lusztig onjetureThis Chapter is devoted to the proof of Lusztig's onjeture on the ombina-torial invariane of Kazhdan-Lusztig polynomials for lower Bruhat intervals inany Coxeter group. This follows by proving that speial mathings lead to aposet theoreti reursion for omputing R-polynomials (Corollary 4.4.8). Corol-lary 4.4.8 is reformulated in a very ompat way in Setion 5 (Theorem 4.5.2) byintroduing a ombinatorial version of the Heke algebra (naturally assoiatedto the speial mathings) whih ats on the lassial Heke algebra.4.1 Combinatorial properties of Bruhat intervalsIn this setion we prove some ombinatorial properties of Bruhat order on aCoxeter group whih are needed in the sequel.The next result an be proved in a way exatly analogous to Lemma 3.1 of[32℄, and its proof is therefore omitted. We refer the reader to [39℄ for a detailedtreatment of roots systems.Lemma 4.1.1 Let (W;S) be a Coxeter system and t1; : : : ; t2n 2 T (n 2 P).- If t1t2 = t3t4 6= e then the orresponding positive roots �t1 , �t2 , �t3 , �t14 areoplanar.- If t1; t2; : : : ; tn are suh that the orresponding positive roots �t1 ; �t2 ; : : : �tnare oplanar then the re�etion subgroup ht1; t2; : : : ; tni is a dihedral re-�etion subgroup. 87



88 Chapter 4. Proof of Lusztig onjetureTheorem 4.1.2 Let (W;S) be a Coxeter system and a; b 2 W be suh thateither jfw 2W : w C a; w C bgj � 3; (4.1)or jfw 2W : w B a; w B bgj � 3: (4.2)Then a = b.Proof. We prove the assertion for (4:1), the proof for (4:2) being entirelysimilar.Suppose that a 6= b and let x; y; z 2 fw 2 W : wCa; wCbg. Let t1; : : : ; t6 2 Tbe suh that at1 = x, at3 = y, at5 = z, bt2 = x, bt4 = y, bt6 = z. Then at1t2 =at3t4 = at5t6 = b so t1t2 = t3t4 = t5t6 6= e. This, by Lemma 4.1.1, implies thatW 0 := ht1; : : : ; t6i is a dihedral re�etion subgroup. Clearly, a; b; x; y; z 2 aW 0.But, by Lemma 1.4 of [32℄, aW 0 with the partial order indued by the Bruhatordering of W is poset-isomorphi to W 0 (onsidered as an abstrat Coxetersystem). This is a ontradition sine W 0 is a dihedral Coxeter system, andx; y; z are inomparable. Hene a = b, as desired. �Note that Theorem 4.1.2 immediately implies Proposition 3.1 of [17℄. Thefollowing result, though already known, turns out to be a diret onsequene ofTheorem 4.1.2. We all an interval [u; v℄ in a poset P dihedral if it is isomorphito a �nite dihedral group ordered by Bruhat order.Corollary 4.1.3 Let (W;S) be a Coxeter system, and u, v 2 W . Suppose thatjfz 2 [u; v℄ : l(z) = l(v)� 1gj = 2. Then [u; v℄ is a dihedral interval.Proof. It is well known that, for all x; y 2W suh that y � x and l(x)�l(y) = 2,[y; x℄ is a Boolean algebra of rank 2. Using this and Theorem 4.1.2, it is easyto prove, by indution on i, that jfw 2 [u; v℄ : l(w) = l(v) � igj = 2, for alli 2 [l(v)� l(u)� 1℄, as desired. �4.2 Pairs of speial mathingsThe following result follows diretly from [17, Lemma 4.1℄.



4.2 Pairs of speial mathings 89PSfrag replaements xM(x) N(x)NM(x) MN(x)MNM(x) NMN(x)Figure 4.1: The orbits hM;Ni(u) are dihedral intervalsLemma 4.2.1 Let P be a graded poset, M be a speial mathing of P , andu; v 2 P be suh that M(v) C v and M(u) B u. Then M restrits to a speialmathing of [u; v℄.Sine a mathing is an appliation from the set of verties of a graph to itself,we an ompose speial mathings as funtions. Given two speial mathings,M and N , we wish to look at the struture of the orbits of hM;Ni, the groupgenerated byM and N . For x 2 P we denote by hM;Ni(x) the orbit of x underthe ation of hM;Ni.Lemma 4.2.2 Let P be a �nite graded poset, and M and N be two speialmathings of P . Then the orbit hM;Ni(u) of any u 2 P is a dihedral interval.Proof. Sine P is �nite, the orbit hM;Ni(u) is also �nite. Therefore thereexists x 2 hM;Ni(u) suh that M(x) C x and N(x) C x. If M(x) = N(x)then hM;Ni(u) = fx;M(x)g and we are done. Else, by the de�nition of a spe-ial mathing we have that N(M(x)) CM(x), N(M(x)) C N(x), M(N(x)) CN(x), and M(N(x)) C M(x). If M(N(x)) = N(M(x)) then hM;Ni(u) =fx;N(x);M(x); N(M(x))g and we are done. Otherwise we onlude, simi-larly, that MNM(x)CNM(x), MNM(x)CMN(x), NMN(x)CMN(x), andNMN(x)CNM(x) (see Figure 4.1).If MNM(x) = NMN(x) then we are done, else we ontinue in this way.Sine hM;Ni(u) is �nite there exists l 2 P suh thatMNM : : :| {z }l (x) = NMN : : :| {z }l (x)and the result follows. �The following is the main result of this setion, and one of the key ingredientsin the proof of our main result. We say that a graded poset P avoids K3;2 ifthere are no elements a1; a2; a3; b1; b2 2 P , all distint, suh that either ai C bj



90 Chapter 4. Proof of Lusztig onjeturefor all i 2 [3℄, j 2 [2℄ or aiB bj for all i 2 [3℄, j 2 [2℄. So, for example, a Coxetergroup under Bruhat order avoids K3;2 by Theorem 4.1.2.Proposition 4.2.3 Let P be a graded poset that avoids K3;2, v 2 P , andM andN be two speial mathings of P suh thatM(v) 6= N(v). Let v0 =2 fM(v); N(v)gand suppose that eitheri) M(v)C v, N(v)C v and v0 C v, orii) M(v)B v, N(v)B v and v0 B v.Then jhM;Ni(v)j = jhM;Ni(v0)j:Proof. We prove the statement only in ase i), ase ii) following by onsideringthe dual poset P �. Suppose that jhM;Ni(v)j = 2n, jhM;Ni(v0)j = 2m. Notethat, sine v0 62 fM(v); N(v)g, hM;Ni(v) \ hM;Ni(v0) = ;. Therefore, noelement of hM;Ni(v) is mathed by eitherM or N to an element of hM;Ni(v0).This, by the de�nition of a speial mathing, and a simple indution on k,implies thatMNM � � �| {z }k (v0)CMNM � � �| {z }k (v) ; MNM � � �| {z }k (v0)CNMN � � �| {z }k�1 (v0);and similarly thatNMN � � �| {z }k (v0)CNMN � � �| {z }k (v) ; NMN � � �| {z }k (v0)CMNM � � �| {z }k�1 (v0);for all k 2 [n℄. Therefore, m � n. If m > n, then MNM � � �| {z }n (v) = NMN � � �| {z }n (v),whileMNM � � �| {z }n (v0) 6= NMN � � �| {z }n (v0), and this ontradits the fat that P avoidsK3;2 (see Figure 4.2). �We now restrit our attention to the ase where P is a lower Bruhat intervalof a Coxeter group W , i.e. an interval of the form [e; v℄, with v 2 W . In thisase we often refer to a speial mathing of [e; v℄ as a speial mathing of v.Lemma 4.2.4 Let u; v 2 W , u � v and M and N be two speial mathings ofv. Suppose that jhM;Ni(u)j > 2. Then there exists a unique maximal dihedralinterval I ontaining hM;Ni(u). Furthermore I is a union of orbits of hM;Ni.
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PSfrag replaements vM(v) N(v)NM(v) MN(v)NMN(v) = MNM(v)
v0M(v0) N(v0)NM(v0) MN(v0)NMN(v0)MNM(v0)Figure 4.2: The ase n = 3 and m > nProof. The result follows easily by Theorem 4.1.2, Lemma 4.2.2 and the de�-nition of a speial mathing. �Lemma 4.2.5 Let u; v 2 W , u � v and M and N be two speial mathings ofv. If jhM;Ni(u)j = 2m > 2, then there exists u0 and a dihedral interval I suhthat e;M(e); N(e) 2 I, jhM;Ni(u0)j = 2m and hM;Ni(u0) � I. In partiular,if M(e) 6= N(e), then WfM(e);N(e)g ontains an orbit of ardinality 2m.Proof. Without loss of generality we may assume that M(u); N(u) C u. Welaim that we an �nd a sequene u = u1Bu2B� � �Buk suh thatM(ui); N(ui)Cui, jhM;Ni(ui)j = 2m for all i 2 [k℄, and [e; uk℄ is a dihedral interval. In fat iffz 2 [e; u℄ : z C ug = fM(u); N(u)g then we are done. Otherwise let u2 2 fz 2[e; u℄ : z C ug n fM(u); N(u)g. Then, by Proposition 4.2.3, jhM;Ni(u2)j = 2mand M(u2) C u2, N(u2) C u2. If fz 2 [e; u2℄ : z C u2g = fM(u2); N(u2)g thenour laim is proved. Otherwise let u3 2 fz 2 [e; u2℄ : z C u2g n fM(u2); N(u2)gand ontinue as above. This proves our laim. Let I be the maximal dihedralinterval ontaining hM;Ni(uk). Sine [e; uk℄ is dihedral we have hM;Ni(uk) �[e; uk℄ � I and by Lemma 4.2.4 I is union of orbits of hM;Ni. In partiularM(e); N(e) 2 I and the proof is omplete. �



92 Chapter 4. Proof of Lusztig onjeture4.3 Groups of rank 3If J � S and w 2 W we let WJ (w) :=WJ \ [e; w℄.For x; y 2 S we denote by � � �xyx (respetively xyx � � �) a word given byalternating x and y that ends (respetively begins) with x. Inside any singleproof, if the length of suh a word is not spei�ed, it is assumed to be arbitrarybut �xed.A omplete mathing of an interval [e; w℄ is alled a multipliation mathingif there exists s 2 S suh that either M = �s or M = �s.The expressions onsidered for an element of a Coxeter group are alwaysassumed to be redued.Lemma 4.3.1 Let u;w 2 W , u � w andM be a speial mathing of w. Supposethat u does not belong to any dihedral interval ontaining e and M(e), and thatM(u) B u. Then there exist two distint elements u1 and u2 suh that ui C uand M(ui)B ui, for i = 1; 2.Proof. By Lemma 4.2.1, given an element v with v BM(v), M restrits to aspeial mathing of [e; v℄. In partiular M(e) � v. Hene, if M(e) 6� u, thenM(x)B x for all x 2 [e; u℄, and the assertion is proved.So we may assume that M(e) � u. Hene the interval [e; u℄ is not dihedral and,in partiular, [e;M(u)℄ has at least two oatoms distint from u, say x1 andx2. Then the elements ui = M(xi), for i = 1; 2, satisfy the onditions of thestatement. �Lemma 4.3.2 Let u;w 2 W , u � w andM be a speial mathing of w. Supposethat for all x � u suh that x belongs to a dihedral interval ontaining e andM(e) we have M(x) = xM(e). Then M(u) = uM(e).Proof. We proeed by indution on l(u) the statement being trivial if l(u) =0. We may assume M(u) B u, otherwise the statement follows by indution.Furthermore, we may learly assume that u does not belong to a dihedral intervalontaining e andM(e). Hene, by Lemma 4.3.1, there exist two distint elementsu1 and u2 suh that ui C u and M(ui) B ui, for i = 1; 2. By our indutionhypothesisM(ui) = uiM(e), for i = 1; 2. Therefore uM(e) overs u;M(u1) andM(u2) and, by the de�nition of a speial mathing, M(u) also overs u;M(u1)and M(u2). Hene M(u) = uM(e) by Theorem 4.1.2. �Proposition 4.3.3 Let w 2 W and M be a speial mathing of w. Then forall J � S suh that M(e) 2 J , M stabilizes WJ (w).
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PSfrag replaements

e rstts st sr rs
tst str M(sr)

Figure 4.3: Proof of Lemma 4.3.4.Proof. We prove that u 2 WJ(w) implies M(u) 2 WJ (w) by indution onl(u), this being trivial if l(u) = 0. We may learly assume that M(u)B u. LetxCM(u), x 6= u. Then M(x)C u and by our indution hypothesis x 2 WJ (w).Hene all the oatoms of M(u) are in WJ (w), so M(u) 2 WJ (w). �From now on we assume that (W;S) is a Coxeter system of rank 3. Welet S := fs; r; tg, w 2 W , M be a speial mathing of w and we assume thatM(e) = s.Lemma 4.3.4 If rs; sr; ts; st � w, rs 6= sr, st 6= ts, M(t) = ts and M(r) = rs,then M(st) = sts and M(sr) = srs.Proof. By symmetry it su�es to show that M(st) = sts.By de�nition of a speial mathing M(st) B st and M(st) B ts, so M(st) 2fsts; tstg. Similarly, M(sr) 2 fsrs; rsrg. Suppose M(st) = tst. If str � wthen (see Figure 4.3) M(str) B tst;M(sr). But there are no elements overingboth tst and M(sr), so str � w. Similarly srt � w. Now onsider a reduedexpression for w. Then tst and either srs or rsr are both subexpressions of itand it is easy to see that these onditions fore that either str or srt is also asubexpression, ontraditing the fat that str � w and srt � w. �



94 Chapter 4. Proof of Lusztig onjetureLemma 4.3.5 Suppose rs; sr; ts; st � w, M(t) = ts and M(r) = rs, but M 6=�s. Let x0 be a minimal element suh that M(x0) 6= x0s. By Lemma 4.3.2, weneessarily have x0 2Wfs;tg(w)[Wfs;rg(w) and we assume that x0 2 Wfs;tg(w).Let u be suh that x0 C u � w and u =2 Wfs;tg(w). Then u 2 fx0r; rx0g.Furthermore, if sr 6= rs, then u = rx0.Proof. Clearly, s =2 DR(x0), andM(x0)Bx0. Let x0 = ��� � � � tst| {z }k where � = sif k is even, � = t if k is odd and f�; �g = fs; tg. Sine x0 6= t we onlude thatst 6= ts. Hene, by Lemma 4.3.4, M(sr) = srs. Let u be as in the statementand assume u =2 fx0r; rx0g if sr = rs and u 6= rx0 if sr 6= rs. So u is obtainedby inserting a letter r in the unique redued expression of x0.Let y := �u. Then y C u, hene the elements in Wfs;tg(y) are all stritlysmaller than x0. Furthermore, the elements in Wfs;rg(y) are smaller than, orequal to, srs. Hene, by Lemma 4.3.2, M(y) = ys. Sine x0 and y are bothovered by u, M(u) BM(x0) = ��� � � � tst| {z }k+1 6= ��� � � � sts| {z }k+1 and M(u) BM(y).Then it is not di�ult to see that these two onditions fore M(u) = yst whihis a ontradition sine, as one an verify, yst 6> u. �Lemma 4.3.6 Suppose that M(t) = ts 6= st and M(r) = sr 6= rs. Thenrst � w. Furthermore, if rt 6= tr, then rt � w.Proof. Suppose rt � w. Then, by the de�nition of speial mathing,M(rt)Brt,M(rt)Bts andM(rt)Bsr (see Figure 4.4). If rt 6= tr there are no suh elementsand this proves the seond part of the statement. If rt = tr then neessarilyM(rt) = tsr. If rst � w then M(rst) would over both tsr and rst and thereare learly no suh elements. �In the following results we distinguish three ases:1. M(t) = ts, M(r) = rs 6= rs and M 6� �s. We let x0 be a minimalelement suh that M(x0) 6= x0s, we assume that x0 2 Wfs;tg(w) and welet ��� � � � tst be its unique redued expression.2. M(t) = ts, M(r) = rs = sr and M 6� �s. We let x0 be the minimal ele-ment suh that M(x0) 6= x0s and we let ��� � � � tst be its unique reduedexpression.3. M(t) = ts 6= st and M(r) = sr 6= rs.
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e
rstts srrt

tsr rst

Figure 4.4: Proof of Lemma 4.3.6.The following Proposition shows that if an interval [e; w℄ has a speial mathingwhih is not a multipliation mathing, then w must be of a speial form.Proposition 4.3.7 In ase (1) any element u � w has a redued expressionu = � � � r�r���� � � �, where � 2 fe; �g;In ase (2) any element u � w has a redued expression of the form u =� � � r�r�(��� � � �)Æ, where � 2 fe; �gand Æ 2 fe; rg;In ase (3) any element u � w has a redued expression u = � � � tst"rsr � � �,where " 2 fe; sg.Proof. It is lear that in all ases it is enough to prove the statement for u = w,the general result following by the subword property.(1) Let ��� � � � tst be a longest subword of a redued expression of w givenby alternating s and t, starting with � and ending with t with the �rst � hosenas left as possible. Consider the �rst letter r that appears after the �rst � ofthis subword. By Lemma 4.3.5, this letter r an be pushed to the left of thissubword. Hene we obtain a redued expression for w where no r appears afterthe �rst letter � and the thesis follows.(2) This is similar to the proof of (1) but in this ase a letter r an alsoappear on the right of the longest subword of the form ��� � � � tst and we aredone.



96 Chapter 4. Proof of Lusztig onjeture(3) Consider a redued expression for w and look at the rightmost letter tand at the leftmost letter r of this redued expression. If this t appears on theleft of this r we are done. Otherwise, by Lemma 4.3.6, there annot be a letters between them and rt = tr. So these two letters are adjaent and hene wean �nd a redued expression for w in whih all the letters t appear before allthe letters r and the result follows. �Proposition 4.3.8 There exists x 2 fr; tg suh that either M � �s or M � �son Wfs;xg(w).Proof. We may assume that [e; w℄ is not dihedral. Note that the result istrue for a speial mathing M of [e; w℄ if and only if it is true for the speialmathing ~M of [e; w�1℄ de�ned by ~M(x) := (M(x�1))�1, for all x � w�1. Wemay learly assume that M is not a multipliation mathing and that4 =2 fjWfr;sg(w)j; jWft;sg(w)jg: (4.3)In partiular, rs 6= sr and ts 6= st If M(r) = rs and M(t) = ts we are in ase(1) (possibly by exhanging the roles of r and t). If M(r) = sr and M(t) = stthen ~M is in ase (1). If M(r) = sr 6= rs and M(t) = ts 6= st we are in ase(3). So we only need to onsider these two ases.In ase (1) we have that � = s otherwise, by Proposition 4.3.7, Wfr;sg(w) =fe; s; r; rsg and this is not possible by (4.3). By ontradition, suppose thatM 6� �s on Wfr;sg(w), and let y0 2 Wfr;sg(w) be a minimal element suh thatM(y0) 6= y0s. By Lemma 4.3.5, y0t 6� w, but this is a ontradition, sine w isnot dihedral.In ase (3) we laim that either M � �s on Wft;sg(w) or M � �s on Wfr;sg(w).We prove this statement by indution on l(w). By Proposition 4.3.7 w =� � � tst| {z }k " rsr � � �| {z }h (this being a redued expression), where " 2 fe; sg. By (4.3)we have h; k � 2. Let w1 and w2 be the two oatoms of [e; w℄ obtained bydeleting, respetively, the �rst and the last letter of this redued expression ofw. Clearly, there exists i 2 f1; 2g suh that M restrits to a speial mathingof [e; wi℄. We assume i = 1 the ase i = 2 being similar. By our indution hy-pothesis either M � �s on Wft;sg(w1) or M � �s on Wfr;sg(w1). In this seondase we are done sine Wfr;sg(w1) = Wfr;sg(w). So assume that M � �s onWft;sg(w1). But Wft;sg(w) nWft;sg(w1) = f� � � tst| {z }k ; � � � sts| {z }k+1 g and sine, by Propo-



4.3 Groups of rank 3 97sition 4.3.3, M stabilizes Wft;sg(w) we neessarily have M(� � � tst| {z }k ) = (� � � sts| {z }k+1 )and hene M � �s on Wft;sg(w). �Proposition 4.3.8 allows us to add some hypothesis to the ases we are dealingwith, without a�eting the generality of our argument.(1') M(t) = ts, sr 6= rs, M � �s on Wfs;rg(w) and M 6� �s on Wfs;tg(w).We let x0 be the minimal element suh that M(x0) 6= x0s and we let��� � � � tst be its unique redued expression.(2') M(t) = ts, rs = sr and M 6� �s on Wfs;tg(w). We let x0 be the mini-mal element suh that M(x0) 6= x0s and we let ��� � � � tst be its uniqueredued expression.(3') M(t) = ts 6= st, sr 6= rs and M � �s on Wfs;rg(w).The next result desribes how a speial mathing ats on the interval [e; w℄.Proposition 4.3.9 In ase (1') let u � w, u = � � � r�r���� � � � where � 2fe; �g and � =2 DR(� � � r�r). Then M(u) = � � � r�rM(���� � � �).In ase (2') let u � w, u = � � � r�r�(��� � � �)Æ where � 2 fe; �g, Æ 2 fe; rgand � =2 DR(� � � r�r). Then M(u) = � � � r�rM(���� � � �)Æ.In ase (3') let u � w, u = � � � tst"rsr � � � where " 2 fe; sg and s =2DL(rsr � � �). Then M(u) =M(� � � tst")rsr � � �.Proof. (1') We proeed by indution on l(u) the ase � � � r�r = e being trivialand the ase ���� � � � = e following by Lemma 4.3.2 if � = t and by ourhypotheses if � = s.So suppose that the length of the string � � � r�r is at least 1. We may assumethatM(���� � � �)B���� � � � 6= e, else the statement follows by our indution hy-pothesis. Now let x 2 DL(� � � r�r). Then xuCu and by our indution hypothesisM(xu) = x(� � � r�r)M(���� � � �). Now let v be the unique element suh thatv C ���� � � � and M(v)B v. Then � � � r�rv C u and M(� � � r�rv) = � � � r�rM(v)by our indution hypothesis. Sine � � � r�rM(���� � � �) overs u, M(xu) andM(� � � r�rv) and these three elements are learly distint, we neessarily haveM(u) = � � � r�rM(���� � � �).(2') We proeed by indution on l(u). We may assume that M(���� � � �)B���� � � � as otherwise the statement follows by our indution hypothesis. Sup-pose �rst that � � � r�r = e. Then we an assume Æ = r and ���� � � � 6= eas otherwise the result would be trivial. So, if we de�ne v as in ase (1'),



98 Chapter 4. Proof of Lusztig onjeturewe have that vr and ���� � � � are both overed by u. Then M(u) is nees-sarily equal to M(���� � � �)r sine this is the unique element that overs u,M(vr) =M(v)r andM(���� � � �) and the result follows similarly. If � � � r�r 6= eand ���� � � � = e the laim follows from Lemma 4.3.2 and if � � � r�r 6= e and���� � � � 6= e the proof is similar to the ase (1').Case (3') is very similar to ase (1') and is left to the reader. �The next result gives some further restritions on a speial mathing whihis not a multipliation mathing.Proposition 4.3.10 In ase (1') let w = � � � r�r| {z }h ���� � � �, with � 2 fe; �g and� =2 DR(� � � r�r). If h � 2 and � 2 DL(w), then M Æ �� = �� ÆM .In ase (2') let w = � � � r�r| {z }h �(��� � � �)Æ, with � 2 fe; �g, Æ 2 fe; rg and� =2 DR(� � � r�r). If h � 2 and � 2 DL(w), then M Æ �� = �� ÆM .In ase (3') let w = � � � tst" rsr � � �| {z }h , with " 2 fe; sg and s =2 DL(rsr � � �). Ifh � 2 and s 2 DR(w), then M Æ �s = �s ÆM .Proof. By Lemma 4.2.5, we know that two speial mathings M and N of aBruhat interval [e; w℄ ommute if and only if they do inside the dihedral intervalsontaining M(e) and N(e).In ases (1') and (2'), sineM � �s onWfr;sg(w) it is lear thatM Æ�� = ��ÆMon Wfr;sg(w). So we only have to show that M Æ �� = �� ÆM on Wft;sg(w).Let u := ��� � � �| {z }k � w. We laim that if M(u)B u then M(u) = ��� � � �| {z }k+1 . Infat, onsider v := �r ��� � � �| {z }k�1 . It is lear that uCv � w. By Proposition 4.3.9 wehave thatM(v) = �rM(��� � � �| {z }k�1 ). Sine, by the de�nition of a speial mathing,M(v)BM(u) we neessarily have M(��� � � �| {z }k�1 )B ��� � � �| {z }k�1 . By Proposition 4.3.3,M(��� � � �| {z }k�1 );M(u) 2Wfs;tg(w), so M(v) = �r ��� � � �| {z }k and M(u) = ��� � � �| {z }k+1 .Now onsider an orbit of hM;��i inside Wfs;tg(w) of ardinality greaterthan 2. We show that the ardinality of this orbit is neessarily 4. Let z be thesmallest element of this orbit, say z = ��� � � �| {z }k�1 . Then ��(z) = ��� � � �| {z }k , foringM(z) = ��� � � �| {z }k . Then by our laim M(��(z)) = ��� � � �| {z }k+1 = ��(M(z)).The proof of ase (3') is very similar and is left to the reader. �



4.4 Main result 99The following result is not needed in the sequel and is a partiular ase ofTheorem 4.4.7. Nevertheless we state and prove it to omplete the disussionon groups of rank 3.Theorem 4.3.11 Let (W;S) be a Coxeter system of rank 3, w 2W , l(w) > 1and M be a speial mathing of [e; w℄. Suppose that [e; w℄ is not a dihedralinterval. Then there exists a multipliation mathing N of [e; w℄ suh that1. N(M(u)) =M(N(u)), for all u � w;2. N(w) 6=M(w).Proof. We an learly assume that M is not a multipliation mathing. Infat, if M = �s then w has a redued expression having s as a �rst letterw = ss1 � � � sk and hene it is enough to set N = �sk , and similarly if M = �s.Note also that the statement is true for M if and only if it is for the speialmathing ~M de�ned in the proof of Proposition 4.3.8. If there exists a t 2 Ssuh thatM is not a multipliation mathing onWfs;tg(w) then, by Proposition4.3.8, either M or ~M is in one of the ases (1'), (2') or (3'). If suh a t does notexist we are neessarily in ase (3'). So we are redued to onsider these 3 ases.In ases (1') and (2'), if r 2 DL(w) it is enough to take N = �r . Otherwisewe neessarily have � 2 DL(w) and �r 6= r�. Then, by Proposition 4.3.10,M Æ �� = �� ÆM and, by Proposition 4.3.9, M(w) 6= ��(w). One again ase(3') is similar and is left to the reader. �4.4 Main resultNow we fae the problem of a speial mathing of an interval [e; w℄ where wbelongs to an arbitrary Coxeter group. We reall the following result for futurereferenes. It follows by the proof of Theorem 5.2 of [17℄ and in fat holds inmuh more generality (see Theorem 7.2.3).Theorem 4.4.1 Let (W;S) be a Coxeter system, w 2 W and M be a speialmathing of [e; w℄. Suppose that, for all v � w with M(v) C v, there exists amultipliation mathing Nv of [e; v℄ suh thatMNv � NvM and M(v) 6= Nv(v).Then eRu;w(q) = eRM(u);M(w)(q) + �(M(u)B u) q eRu;M(w)(q)for all u � w.
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Figure 4.5: Proof of Lemma 4.4.3.Lemma 4.4.2 Let w 2 W andM be a speial mathing of [e; w℄ withM(e) = s.Then there exists at most one x 2 S suh that M 6� �s and M 6� �s onWfs;xg(w).Proof. Suppose there are 2 suh elements, say t and r. It is known that for allJ � S there exists a unique maximal element in WJ (w) that we denote w[J ℄, sothat WJ (w) = [e; w[J ℄℄. By Proposition 4.3.3,M restrits to a speial mathingof [e; w[fs; r; tg℄℄. But this ontradits with Proposition 4.3.8. �Lemma 4.4.3 Let w 2 W ,M be a speial mathing of [e; w℄ and s =M(e). Lett; r 2 S be suh thatM(t) = ts 6= st and M(r) = sr 6= rs and let k1; : : : ; kp 2 Snfsg, p 2 N, be suh that kjs = skj for j 2 [p℄. Suppose that rk1 � � � kpt � w andl(rk1 � � � kpt) = p + 2 . Then there exist h1; : : : hp 2 S suh that fk1; : : : ; kpg =fh1; : : : ; hpg and i 2 [0; p℄ suh that rk1 � � � kpt = h1 � � �hitrhi+1 � � �hp.Proof. By Proposition 4.3.3 and Lemma 4.3.6 (applied to the interval [e; w[J ℄℄,where J := fs; r; tg), we have that tr = rt, so the result holds if p = 0. Weproeed by indution on p. Let u := rk1 � � � kpt. It su�es to show that eitherDL(u) 6= frg or DR(u) 6= ftg, the result then following by indution on p.It is lear that k1 � � � kpt C u. Furthermore, by Lemma 4.3.2, M(k1 � � � kpt) =k1 � � � kpts and similarly M(rk1 � � � kp) = srk1 � � � kp (see Figure 4.5). Therefore,sine M is a speial mathing, M(u) B u, M(u) B k1 : : : kpts, and M(u) Bsrk1 : : : kp. If r is the unique left desent of u and t is its unique right desentthen neessarily either r 2 DL(M(u)) or t 2 DR(M(u)) (or both). Supposer 2 DL(M(u)) the other ase being similar. Sine r � k1 � � � kpts and M(u) B



4.4 Main result 101k1 � � � kpts we haveM(u) = rk1 � � � kpts. Now, sine rk1 � � � kptsBsrk1 � � � kp andt � srk1 � � � kp we have rk1 � � � kps = srk1 � � � kp; whih implies sr = rs and thisis a ontradition. �Proposition 4.4.4 Let J := fr 2 S : M(r) = srg and J 0 := fr 2 S : M(r) =sr 6= rsg � J . Then uJ 2WSnJ0 for all u � w.Proof. Note �rst that J 0 = fr 2 J : rs 6= srg. Let u 2 [e; w℄. Fix a reduedexpression of uJ . Suppose, by ontradition, that fr 2 S : r � uJg \ J 0 6= ;.Consider the last letter of r 2 J 0 appearing in this expression, say r. Thenonsider the �rst letter t =2 J after r. Between r and t there annot be any s byLemma 4.3.6. Hene there an only be letters ommuting with s. By Lemma4.4.3 after a �nite number of steps we �nd a redued expression of uJ that endswith a letter in J whih is learly a ontradition. �Proposition 4.4.5 Let t 2 S be suh that M is not a multipliation mathingon Wfs;tg(w). Suppose that M(t) = ts and denote by x0 = ��� � � � tst theminimal element in Wfs;tg(w) suh that M(x0) 6= x0s. Then � � (uJ)fs;tg forall u � w.Proof. Consider a redued expression for uJ and a longest subsequene of thisexpression of the form ��� � � � tst, hosen with the left-most � and the right-most t. Consider the �rst letter r whih appears after the �rst � distint froms and t. If M(r) = rs 6= sr then this letter an be pushed on the left of the �rst� by Lemma 4.3.5. If M(r) = rs = sr then, by Lemma 4.3.5, we are in one ofthe following three possibilities: r ommutes also with t, or it an be pushed onthe left or it appears after the last t. In the �rst two ases it an be pushed onthe left. So we an suppose that the �rst suh letter r appear after the last t.By Lemma 4.3.5, all the letters that appear after the last t neessarily belongto J . So uJ has a redued expression in whih after the �rst letter � there areonly letters s and t and this learly implies the statement. �Theorem 4.4.6 Let (W;S) be a Coxeter system, w 2 W and M be a speialmathing of [e; w℄ with M(e) = s. Let J := fr 2 S : M(r) = srg. Then(i) If there exists a (neessarily unique) t 2 S suh thatM(t) = ts butM 6� �son Wfs;tg(w), thenM(u) = (uJ)fs;tgM�(uJ)fs;tg(uJ)fsg� fsg(uJ);



102 Chapter 4. Proof of Lusztig onjeturefor all u � w.(ii) If M is a multipliation mathing on Wfx;sg for all x 2 S, thenM(u) = uJsuJ ;for all u � w.Proof. (i) We proeed by indution on l(u) the result being lear if l(u) = 0.Note that, by Proposition 4.3.3,M�(uJ )fs;tg(uJ)fsg� 2Wfs;tg(w) and so, if weset u0 := (uJ)fs;tgM�(uJ)fs;tg(uJ )fsg� fsg(uJ);then (u0J)fs;tg(u0J)fsg = M�(uJ )fs;tg(uJ)fsg�. We may assume that M(u) Bu and that M�(uJ)fs;tg(uJ)fsg� B (uJ)fs;tg(uJ )fsg otherwise we are done byindution.Note �rst that if u = (uJ)fs;tg the result follows from Propositions 4.4.4 and4.4.5 and Lemma 4.3.2, if u = (uJ)fs;tg(uJ)fsg it is trivial, and if u = fsg(uJ)it follows from Lemma 4.3.2. Now onsider the following three possibilities:1. If (uJ )fs;tg 6= e let x1 2 DL((uJ)fs;tg) and u1 := x1u.2. If (uJ )fs;tg(uJ)fsg 6= e let v C (uJ)fs;tg(uJ )fsg be suh that M(v)B v andlet u2 := (uJ)fs;tgv fsg(uJ).3. If fsg(uJ) 6= e let x3 2 DR(fsg(uJ)) and u3 := ux3.By our previous remark, we may ertainly assume that at least two of thesethree hypotheses are satis�ed and hene that there exists i; j 2 f1; 2; 3g, i 6= j,suh that ui and uj an be de�ned as above. Applying our indution hy-pothesis to ui and uj we have that M(ui) B ui, M(uj) B uj . The element(uJ)fs;tgM�(uJ)fs;tg(uJ )fsg� fsg(uJ ) overs u, M(ui) and M(uj). By Proposi-tion 4.1.2, we onlude that M(u) = (uJ)fs;tgM�(uJ)fs;tg(uJ)fsg� fsg(uJ).(ii) This is similar and simpler than ase (i) and is left to the reader. �Theorem 4.4.7 Let (W;S) be a Coxeter system, w 2 W , l(w) > 1 and M bea speial mathing of [e; w℄ and suppose that [e; w℄ is not a dihedral interval.Then there exists a multipliation mathing N of [e; w℄ suh that1. N(M(u)) =M(N(u)), for all u � w;



4.4 Main result 1032. N(w) 6=M(w).Proof. Again we note that the result is true for a speial mathing M if andonly if it is true for ~M and hene we an suppose that we are in one of thetwo ases of Theorem 4.4.6. Suppose to be in ase (i). If (wJ )fs;tg 6= e letx 2 DL((wJ )fs;tg). If x 6= � then we hoose N = �x. We have M � �s onWs;x(w) by Proposition 5.14 and hene we are done by Lemma 4.2.5. If x = �then there exists r 2 S, r < (wJ )fs;tg suh that �r 6= r�. Then if we let K :=fr; s; tg, Proposition 4.3.10 applied to the interval [e; w[K℄℄ = WK(w) impliesthat M�� = ��M and the thesis follows by Lemma 4.2.5. If (wJ )fs;tg = e thenneessarily fsg(uJ) 6= e (otherwise [e; w℄ is dihedral) and we proeed in a similarway onsidering a right desent of fsg(uJ ).If we are in ase (ii) the proof is left to the reader. �As a orollary of Theorem 4.4.7, we an prove Lusztig's onjeture on thelower Bruhat interval of any Coxeter system.Corollary 4.4.8 Let (W;S) be a Coxeter system, w 2 W and M be a speialmathing of [e; w℄. TheneRu;w(q) = eRM(u);M(w)(q) + �(M(u)B u) q eRu;M(w)(q)for all u � w.Proof. Straightforward by Theorems 4.4.1 and 4.4.7. �Corollary 4.4.9 Let (W;S) and (W 0; S0) be two Coxeter systems, w 2 W andw0 2 W 0, and let e and e0 be the identities of W and W 0, respetively. Supposethat � : [e; w℄! [e0; w0℄ is an isomorphism of posets.Then, for all u; v 2 [e; w℄, we have:- Pu;v(q) = P�(u);�(v)(q),- Ru;v(q) = R�(u);�(v)(q),- eRu;v(q) = eR�(u);�(v)(q).Proof. Straightforward by Corollary 4.4.8. �



104 Chapter 4. Proof of Lusztig onjeture4.5 Heke algebra ationsIn this setion we introdue and study, for eah v 2W , a Heke algebra naturallyassoiated to the speial mathings of [e; v℄ and an ation of it on the submoduleof the Heke algebra of W spanned by fTu : u � vg. This ation enables us toreformulate Corollary 4.4.8 in a very ompat way in Theorem 4.5.2 by sayingthat this ation �respets� the anonial involutions � of these Heke algebras.This, in turn, implies that the usual reursion for Kazhdan-Lusztig polynomials(Theorem 0.5.9) holds also when desents are replaed by speial mathings(Corollary 4.5.4) thus giving a poset theoreti reursion for the Kazhdan-Lusztigpolynomials whih does not involve the R-polynomials.Let v 2 W and Sv be the olletion of all the speial mathings of [e; v℄.We denote by (Wv ;Sv) the Coxeter system whose Coxeter generators are theelements of Sv and whose Coxeter matrix is given by m(M;N) := o(MN), theperiod ofMN as a permutation of [e; v℄. Then it is lear that we have a naturalation of Wv on the vetor spae �u�vC u. We denote by bHv the Heke algebraof Wv and by Hv the submodule of H de�ned byHv :=Mu�vZ[q 12 ; q� 12 ℄Tu:Our �rst result de�nes the ation of bHv on Hv that we wish to study. Itis a natural generalization, and uni�ation, of the left and right multipliationations of H(WDL(v)) and H(WDR(v)) on Hv .Proposition 4.5.1 Let v 2W . Then there exists a unique ation of bHv on Hvsuh that TM (Tu) = ( TM(u); if M(u)B u;qTM(u) + (q � 1)Tu; otherwise; (4.4)for all u � v and all M 2 Sv.Proof. The uniqueness part is trivial. To prove the existene we only have tohek that TM (TM (Tu)) = ((q � 1)TM + q)(Tu) for all u � v and M 2 Sv , andthat, if M;N 2 Sv and m := m(M;N), thenTM (TN (TM (� � �| {z }m (Tu)))) = TN(TM (TN(� � �| {z }m (Tu)))) (4.5)for all u � v. The proof of the �rst part is a simple veri�ation and is left to



4.5 Heke algebra ations 105the reader.To prove the seond one let M;N 2 Sv be suh that m(M;N) = m andu 2 [e; v℄. If jhM;Ni(u)j = 2d then neessarily d j m. Let I2(d) be the dihedralgroup of order 2d and s and t, with m(s; t) = d, be its Coxeter generators. Wede�ne a poset isomorphism � : hM;Ni(u) �! I2(d) by�(� � �MNM| {z }k (u0)) := � � � sts| {z }k ;for all k 2 [2d℄, where u0 is the smallest element in hM;Ni(u), and extend thisto a linear map � : H(hM;Ni(u)) �! H(I2(d)) (where H(hM;Ni(u)) is thesubmodule of Hv spanned by fTx : x 2 hM;Ni(u)g) by �(Tx) := T�(x) for allx 2 hM;Ni(u). Then it is lear that �(TM Æ Tx) = Ts�(Tx) and �(TN Æ Tx) =Tt�(Tx) for all x 2 hM;Ni(u). There follows that�(TM (TN (TM (� � �| {z }d (Tx)))) = TsTtTs � � �| {z }d �(Tx)= TtTsTt � � �| {z }d �(Tx)= �(TN (TM (TN (� � �| {z }d (Tx)))):Hene TM (TN (TM (� � �| {z }d (Tx)))) = TN(TM (TN (� � �| {z }d (Tx)))) for all x 2 hM;Ni(u)and (4.5) follows. �It is natural to wonder about the faithfulness of the ation de�ned in (4.4).This will be adressed in Chapter 6.We an now state and prove the �rst main result of this setion, whih isa ompat reformulation of our main result (Corollary 4.4.8) in terms of theation of bHv on Hv . Note that, by Proposition 0.5.1, Hv is invariant under theinvolution � de�ned on H. For onveniene, we use the same symbol � also forthe orresponding involution of the Heke algebra bHv.Theorem 4.5.2 Let v 2 W . Then for all h 2 Hv, ĥ 2 bHv�(ĥ(h)) = �(ĥ)(�(h)):Proof. We may learly assume that h = Tu for some u � v and ĥ = TM , where



106 Chapter 4. Proof of Lusztig onjetureM is a speial mathing of [e; v℄.Suppose �rst that uCM(u). Then, by (4.4) and Proposition 0.5.1, we have�(TM (Tu)) = �(TM(u)) = �TM(u)�1��1 = �"uq�l(u)�1Xx "xRx;M(u) Tx:where "y = (�1)l(y) for all y 2W .On the other hand�(TM )(�(Tu)) = T�1M (T�1u�1)= [q�1TM � (1� q�1)℄ ("uq�l(u)Xx "xRx;u Tx)= "uq�l(u)n Xx/M(x)[q�1"xRx;u TM(x) � (1� q�1)"xRx;u Tx℄ +Xx.M(x)[q�1"xRx;u(qTM(x) + (q � 1)Tx)� (1� q�1)"xRx;u Tx℄o= �"uq�l(u)h XM(x)Cx q�1"xRM(x);u Tx +XM(x)Bx(1� q�1)"xRx;uTx + XM(x)Bx "xRM(x);uTxi= �"uq�l(u)h XM(x)/x q�1"xRx;M(u) Tx + Xx/M(x) q�1"xRx;M(u) Txiby Corollary 4.4.8 and the assertion follows in this ase.Suppose now that u BM(u). Then applying what we have just proved toM(u) yields thatT�1u�1 = �(Tu) = �(TM (TM(u))) = �(TM )(�(TM(u))) = T�1M (T�1M(u)�1)Therefore, by Proposition 4.4, TM (T�1u�1) = T�1M(u)�1 . Hene�(TM (Tu)) = �(qTM(u) + (q � 1)Tu)= q�1T�1M(u)�1 + (q�1 � 1)T�1u�1= q�1TM (T�1u�1) + (q�1 � 1)T�1u�1= [q�1TM � (1� q�1)℄(T�1u�1)= T�1M (T�1u�1)



4.5 Heke algebra ations 107= �(TM )(�(Tu));and the result again follows. �Reall from Theorem 0.5.4 the de�nition of the Kazhdan-Lusztig basis C 0 =fC 0v : v 2Wg of the Heke algebra of W .Theorem 4.5.3 Let v 2 W and M 2 Sv. Then, for all x 2 [e; v℄,C 0M (C 0x) = 8><>: C 0M(x) + Xfz: M(z)Czg�(z; x)C 0z ; if M(x)B x,(q 12 + q� 12 )C 0x; if M(x)C x,in Hv.Proof. Suppose �rst that M(x) B x. Let, for brevity, DM(x) := C 0M (C 0x) �Pfz:M(z)/zg �(z; x)C 0z . To prove that DM(x) = C 0M(x) we use the harateriza-tion of the Kazhdan-Lusztig basis given in Theorem 0.5.4 ([39, Theorem 7.9℄).It is lear from Theorem 4.5.2 that �(DM(x)) = DM(x) . So we only need toshow that if DM(x) = q� l(M(x))2 Xu�M(x) ePu;M(x)(q)Tu;theni) ePM(x);M(x)(q) = 1,ii) ePu;M(x)(q) 2 Z[q℄ and has degree < 12 l(u;M(x)) if u < M(x).We distinguish two ases.Suppose uCM(u). Then TM (C 0x) involves Tu with oe�ient q� l(x)2 qPM(u);x(q).It follows easily that the oe�ient of Tu in C 0M (C 0x) isq� l(M(x))2 qPM(u);x(q) + q� l(M(x))2 Pu;x(q):On the other hand, if u BM(u), TM (C 0x) involves Tu with oe�ient equal toq� l(x)2 (PM(u);x(q) + (q � 1)Pu;x(q)). Again it follows easily that the oe�ientof Tu in C 0M (C 0x) is q� l(M(x))2 PM(u);x(q) + q� l(M(x))2 qPu;x(q):



108 Chapter 4. Proof of Lusztig onjetureFinally, the oe�ient of Tu in P�(z; x)C 0z is in both asesXfz:M(z)Czg�(z; x)q� l(z)2 Pu;z(q):So, if we set  = 1 if M(u)C u and  = 0 otherwise, we only have to show thatthe polynomialsq1�PM(u);x(q) + qPu;x(q)� Xfz :M(z)Czg �(z; x)q l(z;M(x))2 Pu;z(q)satisfy properties i) and ii). The proof of this fat an be done in exatly thesame way as the proof of [39, Theorem 7.9℄ (see [39, x 7.11℄) and it is thereforeomitted.Assume now that M(x) C x. We proeed by indution on l(x). If l(x) = 1then neessarily x =M(e) and the result is easy to verify. So assume l(x) � 2.Then by what we have just proved we have thatC 0x = C 0M (C 0M(x))� Xfz: M(z)Czg�(z;M(x))C 0z : (4.6)Therefore, sine C 0MC 0M = (q 12 + q� 12 )C 0M ,C 0M (C 0x) = (C 0MC 0M )(C 0M(x))� Xfz:M(z)Czg �(z;M(x))C 0M (C 0z)= (q 12 + q� 12 )C 0x;by (4.6) and our indution hypothesis, as desired. �Theorem 4.5.3, and its proof, imply the following poset theoreti reursionfor Kazhdan-Lusztig polynomials depending on speial mathings. It generalizesthe usual reursion for Kazhdan-Lusztig polynomials depending on left or rightdesents (Theorem 0.5.9).Corollary 4.5.4 Let u; v 2 W , u < v, and M be a speial mathing of [e; v℄.ThenPu;v(q) = q1�PM(u);M(v)(q)+qPu;M(v)(q)� Xfz :M(z)Czg�(z;M(v))q l(z;v)2 Pu;z(q)where  = 1 if M(u)C u and  = 0 otherwise. �



4.5 Heke algebra ations 109We illustrate Corollary 4.5.4 with an example. Let v = 34 2 1 2 S(4). TheBruhat interval [e; v℄ has 5 distint speial mathings, l2; �2; �3; �2; �1, whihare shown in Figure 4.6 (for the reason of the notation l2 see Theorem 0.7.3).Using Corollary 4.5.4 for the speial mathing l2 we obtainPe;v = qPl2(e);l2(v) + Pe;l2(v) � Xfz:l2(z)Czg�(z; l2(v))q l(z;v)2 Pe;z= qP1324;3412 + Pe;3412 � (1 � q � Pe;1432 + 1 � q � Pe;3214 + 1 � q2 � Pe;1324)= q(q + 1) + (q + 1)� q � q � q2:Note that using the other 4 speial mathings we obtain genuinely di�erentomputations for Pe;3421. In fat, we obtainPe;3421 = 8>>>><>>>>: q + 1� q using �2;q + (1 + q)� q � q using �3;q + 1� q using �2;q + (1 + q)� q � q using �1:The reason for this is that the speial mathing l2 is not isomorphi to any otherspeial mathing of [e; 3421℄, namely that do not exist a poset- automorphism �of [e; 3421℄ and a speial mathingM of [e; 3421℄ satisfying �l2(x) =M�(x). Infat, any automorphism � of [e; 3421℄must �x 1324 and 3412, namely �(1324) =1324 and �(3412) = 3412. Therefore, any speial mathing M of [e; v℄ suhthat � ÆM = l2 Æ � must satisfy M(e) = 1324 and M(3421) = 3412, but l2 isthe unique speial mathing of [e; v℄ satisfying these two onditions. Atually,more is true. Suppose that u 2 S(n) is suh that [e; u℄ �= [e; 3421℄ (poset-isomorphism). Sine [e; v℄ has only three atoms we dedue that any reduedexpression of u is omposed of letters of exatly 3 di�erent kinds, say si; sj andsk, with i < j < k. If these indies are not onseutive we would have at most4 permutations of length 2 in [e; u℄. So the indies must be onseutive andwe may assume that si = s1, sj = s2, sk = s3 and u 2 S(4). But in S(4)there are only 3 permutations of length 5, namely v; v�1 and 4231, and [e; 4231℄has 4 oatoms. Hene the speial mathing l2 of [e; 3421℄ is not isomorphi toany multipliation mathing in any symmetri group. In fat, with more workone an show that the speial mathing l2 of [e; 3421℄ is not isomorphi to anymultipliation mathing in any Coxeter system (even in�nite). We leave this tothe interested reader.
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Chapter 5Combinatorial poset theoretiformulaeIn this hapter, we introdue three families of sequenes of speial mathings:the regular sequenes, the B-regular sequenes, and the R-regular sequenes. Allof them are new ombinatorial analogues of the onept of redued expression.Using these sequenes, we �nd some formulae valid for Kazhdan-Lusztig andR-polynomials of any Coxeter system.5.1 Regular sequenesOur purpose in this setion is to generalize an algorithm and a losed formulaof Deodhar ([28, Algorithm 4.11℄ and [26, Theorem 1.3℄) for Kazhdan-Lusztigand R-polynomials, respetively.Let v 2 W . We say that a sequene (M1; : : : ;Ml) (where l := l(v)) is aregular sequene (of speial mathings) for v if, for all i = 1; : : : ; l, Mi is aspeial mathing of [e;Mi+1 � � �Ml(v)℄. Note that, in partiular,M1 � � �Ml(v) =e. The regular hain assoiated to a regular sequene (M1; : : : ;Ml) for v is(v0; : : : ; vl) where vi :=Mi+1 � � �Ml(v) =Mi � � �M1(e), for i = 0; : : : ; l. Clearly,e = v0 C v1 C � � �C vl = v and Mi(vi�1) = vi, for i = 1; : : : ; l.For example, if W = S(4) and v = 3421 then the sequene (�1; �3; �2; �2; l2)illustrated in Figure 4.6 is a regular sequene for v. Note that, if si1 � � � sil isa redued expression for v, then (�il ; : : : ; �i1) and (�i1 ; : : : ; �il) are two regularsequenes for v. Thus, the onept of a regular sequene is a generalization of111



112 Chapter 5. Combinatorial poset theoreti formulaethat of a redued expression. We say that a regular sequeneM = (M1; : : : ;Ml)for v omes from a redued expression if there is a redued expression si1 � � � silof v suh that either M = (�il ; : : : ; �i1 ) or M = (�i1 ; : : : ; �il).Our �rst results are the analogues, for any regular sequene, of two wellknown results for redued expressions. They are used repeatedly throughoutthe rest of this work, often without expliit mention.Lemma 5.1.1 Let v 2 W , and (M1; : : : ;Ml) be a regular sequene for v. Thenfor all u � v there exists 1 � i1 < : : : < ik � l suh that (Mi1 ; : : : ;Mik) is aregular sequene for u.Proof. We proeed by indution on l the statement being trivial for l = 1.So assume that l > 1. Note that (M1; : : : ;Ml�1) is a regular sequene forMl(v). Let u 2 [e; v℄. If Ml(u) C u then, by Lemma 0.7.1, Ml(u) � Ml(v) soby indution there exist 1 � i1 < : : : < ik � l � 1 suh that (Mi1 ; : : : ;Mik) is aregular sequene for Ml(u), hene (Mi1 ; : : : ;Mik ;Ml) is a regular sequene foru. If Ml(u) B u then, by Lemma 0.7.1, u � Ml(v) and we onlude again byindution. �As a orollary of the previous result, we obtain a generalization of the Ex-hange Property (Theorem 0.3.1).Corollary 5.1.2 Let v 2W and (M1; : : : ;Ml) be a regular sequene for v. LetM be a speial mathing of v. Then there exists i 2 [l℄ suh thatM(v) =MMl � � �M1(e) =Ml � � � Mi � � �M1(e);where Mi means that Mi has been deleted.Proof. By Lemma 5.1.1, there exists a subsequene of (M1; : : : ;Ml) whih is aregular sequene for M(v). �Lemma 5.1.3 Let v 2 W and (M1; : : : ;Ml) be a regular sequene for v. Thenthe omposition Mik � � �Mi1(e) is de�ned for any 1 � i1 < i2 < � � � < ik � l.Proof. Let (v0; : : : ; vl) be the regular hain assoiated to (M1; : : : ;Ml). Wewill show that Mik � � �Mi1(e) is de�ned and Mik � � �Mi1(e) � vik for all 1 �i1 < i2 < � � � < ik � l.We proeed by indution on k, the laim being lear if k = 0. So let 1 � i1 <i2 < � � � < ik � l, with k � 1. By our indution hypothesis u :=Mik�1 � � �Mi1(e)is de�ned and u � vik�1 < vik . But, by the de�nition of a regular sequene of



5.1 Regular sequenes 113speial mathings, Mik is a speial mathing of [e; vik ℄. Therefore Mik(u) isde�ned and Mik(u) � vik , as desired. �Let v 2 W and M = (M1; : : : ;Ml) be a regular sequene for v (so l = l(v)).Given S = fi1; : : : ; ikg< � [l℄ we let�(S) :=Mik � � �Mi1(e)and we de�ne, for eah j 2 [l℄,"j(S) := ( 1; if Mj(y)C y,0; if Mj(y)B y,where y := �(S \ [j � 1℄). We also letd1(S; l) := Xj2[l℄nS "j(S)and d2(S) :=Xj2S "j(S):Note that (Mi1 ; : : : ;Mik) is a regular sequene for Mik � � �Mi1(e) if and only ifd2(S) = 0. Let, for brevity,d(S; l) := d1(S; l) + d2(S):We say that S is distinguished, with respet to M, if d1(S; l) = 0. In the asethat M omes from a redued expression this onept oinides with the oneintrodued by Deodhar in [26, Def. 2.3℄. We denote by D(M) the set of allsubsets of [l℄ whih are distinguished with respet toM, and we let, for u 2 W ,D(M)u := fS 2 D(M) : �(S) = ug:We an now prove the �rst main result of this setion. It is a losed formulafor R-polynomials whih generalizes Theorem 1.3 of [26℄.Theorem 5.1.4 Let v 2 W and M = (M1; : : : ;Ml) be a regular sequene forv. Then eRu;v(q) = XS2D(M)u ql(v)�jSj;



114 Chapter 5. Combinatorial poset theoreti formulaefor all u 2W .Proof. Our proof is similar to the one given in [26, �5℄, but simpler. The resultis lear if u � v, so assume u � v. We proeed by indution on l := l(v), theresult being trivial if l = 0.So assume l � 1 and let, for onveniene, M := Ml. We distinguish twoases.a) M(u)C u.This implies that if S 2 D(M)u then l 2 S by the de�nition of a distinguishedsubset. Note that (M1; : : : ;Ml�1) is a regular sequene forM(v). De�ne a map' : D(M)u �! D(M1; : : : ;Ml�1)M(u)by letting '(S) = S n flg for all S 2 D(M)u. The map ' is well-de�ned andbijetive sine l 2 S. Therefore, by Corollary 4.4.8 and our indution hypothesisXS2D(M)u ql(v)�jSj = XS02D(M1;:::;Ml�1)M(u) ql(M(v))�jS0j = eRM(u);M(v)(q) = eRu;v(q):b) M(u)B u.Let D(M)�u := fS 2 D(M)u : l =2 Sg and D(M)+u := fS 2 D(M)u : l 2 Sg.De�ne a map ' : D(M)u �! D(M1; : : : ;Ml�1)u [ D(M1; : : : ;Ml�1)M(u) byletting '(S) = ( S; if l =2 S;S n flg; if l 2 S;for all S 2 D(M)u.We laim that ' is a bijetion, that '(D(M)�u ) = D(M1; : : : ;Ml�1)u andthat '(D(M)+u ) = D(M1; : : : ;Ml�1)M(u). All veri�ations are obvious, exeptfor the surjetivity of '. But if S0 2 D(M1; : : :Ml�1)u then S0 2 D(M)u (sineM(u) B u), and if S00 2 D(M1; : : : ;Ml�1)M(u) then S00 [ flg 2 D(M)u andthis proves the surjetivity. Therefore, by Corollary 4.4.8 and our indutionhypothesis, XS2D(M)u ql(v)�jSj = XS02D(M1;:::;Ml�1)u ql(M(v))�jS0j+1 +XS002D(M1;:::;Ml�1)M(u) ql(M(v))�jS00j= q eRu;M(v)(q) + eRM(u);M(v)(q)



5.1 Regular sequenes 115= eRu;v(q);as desired. �The preeding result has the following onsequene, whih is needed in therest of this setion, and whih appears to be di�ult to prove diretly.Corollary 5.1.5 Let v 2 W and (M1; : : : ;Ml) be a regular sequene for v.Then � is a bijetion between fS � [l℄ : d1(S; l) = d2(S) = 0g and [e; v℄.Proof. Clearly, �(S) 2 [e; v℄. Furthermore, sine [tl(u;v)℄( eRu;v) = 1 for allu 2 [e; v℄, we onlude from Theorem 5.1.4 that for eah u 2 [e; v℄ there existsa unique distinguished subset Su suh that �(Su) = u. Sine a subset S � [l℄ isdistinguished if and only if d1(S; l) = 0, and sine l(�(S)) = jSj if and only ifd2(S) = 0, the result follows.�In order to prove the seond main result of this setion we need some furtherproperties of the ation of the Heke algebra bHv on the module Hv de�ned inSetion 4.5. The next result is the analogue, for regular sequenes, of Proposition3.5 of [28℄.Proposition 5.1.6 Let v 2 W and (M1; : : : ;Ml) be a regular sequene for v.Then q l2C 0Ml(C 0Ml�1 (� � � (C 0M1(Te)))) = XS�[l℄ qd(S;l)T�(S); (5.1)in Hv.Proof. Let, for brevity, C 0i := C 0Mi and Ti := TMi for i = 1; : : : ; l. Note �rstthat the left-hand side of (5.1) is well de�ned sine C 0i; Ti 2 bHvi , for i = 1; : : : ; l,(where (v0; : : : ; vl) is the regular hain assoiated to (M1; : : : ;Ml)). We proeedby indution on l � 1, (5.1) being lear if l = 1.So let l � 2 and suppose that (5.1) holds for l�1. Reall that C 0i = q� 12 (1+Ti).Then we haveq l2C 0l((C 0l�1((� � � ((C 01(Te)))) = (1 + Tl)� XS�[l�1℄ qd(S;l�1)T�(S)�= XS�[l�1℄ qd(S;l�1)T�(S)



116 Chapter 5. Combinatorial poset theoreti formulae+ XfS�[l�1℄:Ml(�(S))B�(S)g qd(S;l�1)TMl(�(S))+ XfS�[l�1℄:Ml(�(S))C�(S)g qd(S;l�1)(qTMl(�(S)) + (q � 1)T�(S))= XfS�[l�1℄:Ml(�(S))B�(S)g qd(S;l�1)T�(S)+ XfS�[l�1℄:Ml(�(S))B�(S)g qd(S;l�1)T�(S[flg)+ XfS�[l�1℄:Ml(�(S))C�(S)g qd(S;l�1)+1(T�(S[flg) + T�(S))= XS�[l�1℄ qd(S;l)T�(S) + XS�[l�1℄ qd(S[flg;l)T�(S[flg);sine d(S; l) = d(S [ flg; l) = d(S; l � 1) + "l(S), and (5.1) follows. �For brevity, we all a Coxeter system (W;S) nonnegative if its Kazhdan-Lusztig polynomials Pu;v have nonnegative oe�ients for all u; v 2W .Proposition 5.1.7 Let (W;S) be a nonnegative Coxeter system, v 2 W , and(M1; : : : ;Ml) be a regular sequene for v. Then there exist Lx 2 N[q 12 + q� 12 ℄,for eah x � v, suh that Lv = 1 andC 0Ml(C 0Ml�1 (� � � (C 0M1(Te)))) =Xx�vLxC 0x: (5.2)Proof. Let, for brevity, C 0i := C 0Mi for i = 1; : : : ; l. We proeed by indutionon l � 1, (5.2) being lear if l = 1 (with Le = 0).So let l � 2 and suppose that (5.2) holds for l � 1. Then there exists~Lx 2 N[q 12 + q� 12 ℄ for eah x �Ml(v) suh thatC 0l�1(C 0l�2(� � � (C 01(Te)))) = Xx�Ml(v) ~LxC 0xand ~LMl(v) = 1. Therefore, by Theorem 4.5.3,C 0l(C 0l�1(� � � (C 01(Te)))) = C 0l� Xx�Ml(v) ~LxC 0x�= Xfx�Ml(v): Ml(x)Bxg ~LxhC 0Ml(x) + Xfz: Ml(z)Czg�(z; x)C 0zi+ Xfx�Ml(v): Ml(x)Cxg(q 12 + q� 12 )~LxC 0x;



5.1 Regular sequenes 117and the result follows. �We an now prove the seond main result of this setion, whih plays afundamental role in the algorithm.Theorem 5.1.8 Given a nonnegative Coxeter system (W;S) and v 2 W , let(M1; : : : ;Ml) be a regular sequene for v, and A � fx 2 [e; v℄ : Lx 6= 0g, v 2 A.Then there esists E � P([l℄) suh thatq� l2 XS2E qd(S;l)T�(S) = Xx2ALxC 0x: (5.3)Furthermore, for any y 2 A n fvg, y is maximal in A n fvg if and only ifdeg� XfS2E: �(S)=yg qd(S;l)� � l(y; v)2 (5.4)and deg� XfS2E: �(S)=xg qd(S;l)� < l(x; v)2 (5.5)for all y < x < v. If these onditions are satis�ed thenLy = XfS2E:�(S)=y;d(S;l)� l(y;v)2 g qd(S;l)� l(y;v)2 + XfS2E:�(S)=y;d(S;l)> l(y;v)2 g q l(y;v)2 �d(S;l)(5.6)andPy;v = XfS2E: �(S)=y; d(S;l)< l(y;v)2 g qd(S;l) � XfS2E: �(S)=y; d(S;l)> l(y;v)2 g ql(y;v)�d(S;l):(5.7)Proof. Let x 2 [e; v℄. The oe�ient of Tx in the right-hand side of (5.3) isPy2A Lyq� l(y)2 Px;y. Sine, by our hypotheses, Ly and Px;y are Laurent poly-nomials in q 12 with nonnegative integer oe�ients for all x; y � v, by Proposi-tions 5.1.6 and 5.1.7 we haveXy2ALyq� l(y)2 Px;y �Xy�vLyq� l(y)2 Px;y = q� l2 XfS2P([l℄): �(S)=xg qd(S;l);where the � is oe�ientwise, and this implies (5.3).Now let y be a maximal element of A n fvg and x 2 [e; v℄. Comparing the



118 Chapter 5. Combinatorial poset theoreti formulaeoe�ients of Tx on both sides of (5.3) we obtain thatXfS2E: �(S)=xg qd(S;l) = Xz2ALzq l(z;v)2 Px;z (5.8)= ( Lyq l(y;v)2 + Py;v; if x = y,Px;v; if y < x < v, (5.9)and (5.4) and (5.5) follow sine Ly 6= 0 and Ly(q) = Ly(q�1). Conversely, lety 2 A n fvg be suh that (5.4) and (5.5) hold. Then, by (5.8),deg Xz2ALzq l(z;v)2 Px;z! < l(x; v)2for all y < x < v. Sine Lz and Px;z are Laurent polynomials in q 12 withnonnegative oe�ients for all x; z � v, this implies that x 62 A for all y < x < v,so y is maximal in A n fvg.Finally, if y 2 A n fvg satis�es (5.4) and (5.5) then by (5.9) we haveXfS2E: �(S)=yg qd(S;l) = Lyq l(y;v)2 + Py;v;and (5.6) and (5.7) follow sine deg(Py;v) < l(y;v)2 and Ly 2 N[q 12 + q� 12 ℄. �Theorem 5.1.8 yields an indutive, entirely poset theoreti way of omputingKazhdan-Lusztig polynomials, whih generalizes the one given in [28℄. In fat,let v 2W and assume that we have already omputed the polynomials Px;y forall x; y < v. Take a regular sequene for v, and from it ompute, for eah x � v,using Propositions 5.1.6 and 5.1.7, the oe�ient Px of Tx inq l(v)2 Xx�vLxC 0x:We apply Theorem 5.1.8 to the set A := fx 2 [e; v℄ : Lx 6= 0g. If deg(Px) < l(x;v)2for all x < v, then by Theorem 5.1.8 there are no maximal elements in A n fvg,namely A = fvg. Hene Xx�vLxC 0x = C 0vand Px = Px;v for all x � v. Otherwise, let y < v be a maximal element suh



5.1 Regular sequenes 119that deg(Py) � l(y;v)2 . Then, by (5.6),q l(y;v)2 Ly = U l(y;v)2 (Py(q)) +D l(y;v)�12 �ql(y;v)Py �1q�� :where Uk and Dk are the linear operators satisfying:Uk(qi) = ( 0; if i < k,qi; if i � k, Dk(qi) = ( qi; if i � k,0; if i > k.Sine, by indution, we have already omputed Px;y for all x 2 [e; v℄ we mayompute the di�erenes P 0x = Px � q l(y;v)2 LyPx;y (5.10)for all x 2 [e; v℄. Clearly, P 0x is the oe�ient of Tx inq l(v)2 Xx2[e;v℄nfygLxC 0x:If deg(P 0x) < l(x;v)2 for all x < v then Theorem 5.1.8 applied to A n fyg givesXx2[e;v℄nfygLxC 0x = C 0vand hene P 0x = Px;v for all x � v. Otherwise, let y1 < v be a maximal elementsuh that deg(P 0y1) � l(y1;v)2 , and repeat the above proedure with y1 in plaeof y (note that y1 6� y by (5.10)). After at most j[e; v℄j � 1 steps this proesswill stop.As an immediate onsequene of Theorem 5.1.8 we obtain the following resultwhih, in the ase that the regular sequene omes from a redued expression,is losely related to Theorem 4.12 of [28℄.Corollary 5.1.9 Let (W;S) be a nonnegative Coxeter system, v 2 W , and(M1; : : : ;Ml) be a regular sequene for v. Then there exists E � P([l℄) suh thatPu;v(q) = XfS2E:�(S)=ug qd(S;l);for all u < v.Proof. This follows immediately by taking A = fvg in Theorem 5.1.8. �



120 Chapter 5. Combinatorial poset theoreti formulae5.2 B-regular sequenesOur purpose in this setion is to obtain a bijetion between subsequenes ofertain regular sequenes and ertain paths in an appropriate direted graph.This bijetion has several nie properties, and transforms the onepts andstatistis used in the previous setion into familiar ones on paths. The mainresults of this setion are new even in the ase that the regular sequene omesfrom a redued expression.Let v 2W andM := (M1; : : : ;Ml) be a regular sequene for v. We say thatM is B-regular ifMi(x) 6=Mi+1Mi+2 � � �Mi+k � � �Mi+2Mi+1(x)for all i 2 [l℄, k 2 [l � i℄, and for all x 2 [e; v℄ for whih both sides are de�ned.Note that M is B-regular if and only ifMi(x) 6=Mi�1Mi�2 � � �Mi�k � � �Mi�2Mi�1(x)for all i 2 [l℄, k 2 [i� 1℄, and for all x 2 [e; v℄ for whih both sides are de�ned.Let v 2 W and M := (M1; : : : ;Ml) be a B-regular sequene for v. TheB-graph of [e; v℄, with respet toM, is the direted graph having [e; v℄ as vertexset and where, for any x; y 2 [e; v℄, x ! y if and only if l(x) < l(y) and thereexists i 2 [l℄ suh thaty =MlMl�1 � � �Mi+1MiMi+1 � � �Ml�1Ml(x):If x ! y, then, by the de�nition of B-regular, there is a unique i 2 [l℄ suhthat y = Ml � � �Mi � � �Ml(x) (for if Ml � � �Mi � � �Ml(x) = Ml � � �Mj � � �Ml(x)for some 1 � i < j � l then Mj(~x) = Mj�1 � � �Mi � � �Mj�1(~x) where ~x :=Mj � � �Ml(x), whih ontradits the fat that M is B-regular). We thereforede�ne �(x; y) := �(y; x) := i:For example, one may easily hek that the regular sequene in Figure 5.1 isatually B-regular. The orresponding B-graph is shown in Figure 5.2, wherewe have labeled all edges x ! y with �(x; y), and we have kept all verties inthe same plae for larity.Note that B-regular sequenes always exist. In fat, given any redued ex-
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Figure 5.1: A B-regular sequene of speial mathings.pression s1s2 � � � sn of v, the sequenes (�sn ; �sn�1 ; : : : ; �s1 ) and (�s1 ; �s2 ; : : : ; �sn)are B-regular, as it is easy to hek. Therefore, the onept of a B-regular se-quene is a generalization of that of a redued deomposition.One of the ruial properties of the B-graphs of lower intervals of Coxetergroups is that they are always direted subgraphs of the Bruhat graph. Thishinges on the following result. Reall that we denote by T the set of re�etionsof a Coxeter system (W;S).Theorem 5.2.1 Let v 2 W , and M be a speial mathing of [e; v℄. Supposex; y 2 [e; v℄ are suh that x�1y 2 T . ThenM(x)�1M(y) 2 T: (5.11)Proof. We assume that l(x) < l(y) and we proeed by indution on l(x; y) � 1.If l(x; y) = 1 then xC y. If either M(x)Bx or M(y)C y, then (5.11) followsimmediately from the de�nition of a speial mathing. If M(x)C xC yCM(y)
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Figure 5.2: The B-graph orresponding to the B-regular sequene of Figure 5.1.then, by Lemma 4.2.1, M restrits to a speial mathing of [M(x);M(y)℄. Butit is well known (see, e.g., [11, Lemma 6.2℄) that a Bruhat interval of rank 3 isisomorphi to a k-rown for some k � 2. On the other hand, it is easy to seethat a k-rown has no speial mathings if k � 4, while a 3-rown has no speialmathingM satisfyingM(0̂) < M(1̂). Hene [M(x);M(y)℄ is a 2-rown, so it isisomorphi to S3, and it is known (see Proposition 3.3 of [32℄) that this impliesthat M(x)�1M(y) 2 T .Suppose now that l(x; y) � 3. From our hypotheses and (the proof of)Proposition 3.3 of [32℄, we have that neessarily there exist a; b; ; d 2 [x; y℄,all distint, suh that l(x) < l(a) < l() < l(y), l(x) < l(b) < l(d) < l(y),and fx�1a; a�1; �1y; x�1b; b�1d; d�1y; a�1d; b�1g � T . Therefore, from ourindution hypothesis, we onlude thatfM(x)�1M(a);M(a)�1M();M()�1M(y);M(x)�1M(b);



5.2 B-regular sequenes 123M(b)�1M(d);M(d)�1M(y);M(a)�1M(d);M(b)�1M()g � T: (5.12)But (M(x)�1M(a))(M(a)�1M()) = (M(x)�1M(b))(M(b)�1M()) 6= e.Hene, by Proposition 4.1.1 (or by Lemma 3.1 of [32℄),Wx;a;b; := hM(x)�1M(a);M(a)�1M();M(x)�1M(b);M(b)�1M()iis a dihedral re�etion subgroup of W . Similarly,Wx;a;b;d := hM(x)�1M(a);M(a)�1M(d);M(x)�1M(b);M(b)�1M(d)iand Wb;;d;y := hM(b)�1M();M()�1M(y);M(b)�1M(d);M(d)�1M(y)iare dihedral re�etion subgroups ofW . ButWx;a;b;\Wx;a;b;d � hM(x)�1M(a);M(x)�1M(b)i. Therefore, by Remark 3.2 of [32℄, there exists a dihedral re-�etion subgroup W 0 of W suh that W 0 � Wx;a;b; [ Wx;a;b;d. Similarly,W 0 \ Wb;;d;y � hM(b)�1M();M(b)�1M(d)i, so there exists a dihedral re-�etion subgroup W 00 of W suh that W 00 � W 0 [Wb;;d;y (we ould also havetaken W 0 maximal so that W 00 =W 0). This implies thatfM(x);M(a);M(b);M();M(d);M(y)g �M(x)W 00:By Theorem 1.4 of [32℄, there is an isomorphism of direted graphs � fromthe graph indued on M(x)W 00 by the Bruhat graph of W to the Bruhatgraph of W 00 (onsidered as an abstrat Coxeter system). Hene, by (5.12),in the Bruhat graph of W 00 there are edges onneting �(M(x)) with �(M(a)),�(M(a)) with �(M()), and �(M()) with �(M(y)). But W 00 is a dihedral Cox-eter group, hene for any u;w 2 W 00 there is an edge in the Bruhat graph ofW 00 onneting u with w if and only if l00(u;w) � 1 (mod 2), where l00 is thelength funtion of W 00 with respet to its set of anonial generators. Thereforel00(�(M(x)); �(M(a))) � l00(�(M(a)); �(M())) � l00(�(M()); �(M(y))) � 1(mod 2), whih implies that l00(�(M(x)); �(M(y))) � 1 (mod 2), and hene thatthere is an edge, in the Bruhat graph ofW 00, onneting �(M(x)) with �(M(y)).But � is an isomorphism of direted graphs, so there is an edge in the Bruhatgraph of W onneting M(x) with M(y), and (5.11) follows. �We an now prove that the B-graphs of lower intervals of a Coxeter system



124 Chapter 5. Combinatorial poset theoreti formulaeare always direted subgraphs of the Bruhat graph.Corollary 5.2.2 Let v1; : : : ; vr 2W and Mi be a speial mathing of [e; vi℄ fori = 1; : : : ; r. Let x 2 W be suh that MrMr�1 � � �M2M1M2 � � �Mr�1Mr(x) isde�ned. Then x�1MrMr�1 � � �M2M1M2 � � �Mr�1Mr(x) 2 T: (5.13)Proof. We proeed by indution on r � 1, the result being learly true ifr = 1. So assume that r � 2. From our hypothesis, it follows that the ompo-sition Mr�1 � � �M2M1M2 � � �Mr�1(Mr(x)) is de�ned. Hene, by our indutionhypothesis, Mr(x)�1Mr�1 � � �M2M1M2 � � �Mr�1(Mr(x)) 2 T . Therefore, byTheorem 5.2.1, x�1MrMr�1 � � �M2M1M2 � � �Mr�1Mr(x) 2 T . �An important onsequene of Corollary 5.2.2 is the following result, whihin the ase that the B-regular sequene (M1; : : : ;Ml) omes from a redueddeomposition is a onsequene of the Exhange Property.Proposition 5.2.3 Let v 2 W , (M1; : : : ;Ml) be a B-regular sequene for v,and y 2 [e; v℄, j 2 [l℄ be suh that Mj(y) is de�ned. Then the following areequivalent:i) Mj(y)B y;ii) Ml � � �Mj(y) > Ml � � �Mj+1(y).Proof. Assume �rst that i) holds. We will prove, by indution on k, thatMj+k � � �Mj(y) > Mj+k � � �Mj+1(y) (5.14)for k = 0; : : : ; l � j. If k = 0 then (5.14) is true by our hypothesis i). So letk � 1 and assume, by indution, thata :=Mj+k�1 � � �Mj(y) > Mj+k�1 � � �Mj+1(y) := b: (5.15)Note that Mj+k(a) =Mj+k � � �Mj+1MjMj+1 � � �Mj+k(Mj+k(b)):Therefore, by Corollary 5.2.2, Mj+k(a) and Mj+k(b) are omparable in the



5.2 B-regular sequenes 125Bruhat order. Hene, to prove (5.14), it is enough to show thatl(Mj+k(a)) � l(Mj+k(b)): (5.16)Suppose, by ontradition, thatl(Mj+k(a)) < l(Mj+k(b)): (5.17)From (5.15) we have that l(a) > l(b): This, together with (5.17), fores that bCaand this implies that Mj+k(b) = a, sine Mj+k is a speial mathing. ThereforeMj+k(b) =Mj+k�1 � � �Mj+1MjMj+1 � � �Mj+k�1(b)and this ontradits the hypothesis that (M1; : : : ;Ml) is a B-regular sequene.This proves (5.16) and hene (5.14) and onludes the indution step.Assume now that i) does not hold, i.e. Mj(y)Cy. ThenMj(Mj(y))BMj(y).Hene, by what we have just provedMl � � �MjMj(y) > Ml � � �Mj+1Mj(y)so ii) does not hold. �Note that the above proposition does not hold if (M1; : : : ;Ml) is regularbut not B-regular. For example, let W = S(5), v = 32154, (M1; : : : ;M4) =(�2; �1; �4; �1), y = e, and j = 2. Then (M1; : : : ;M4) is a regular sequene for vand M2(e)B e but M4M3M2(e) = 12354 6� 21354 =M4M3(e).We an now prove the main result of this setion, whih gives a bijetionbetween subsequenes of a B-regular sequene and ertain paths in the B-graphof [e; v℄. The result is new even in the ase that the B-regular sequene omesfrom a redued deomposition. Reall the de�nition of �, d1(S; l) and d2(S)from Setion 5.1.Theorem 5.2.4 Let v 2 W and (M1; : : : ;Ml) be a B-regular sequene forv. Then there is a bijetion between subsets S of [l℄ and (undireted) paths� = (x0; x1; : : : ; xs) in the B-graph of [e; v℄ suh that x0 = v and �(x0; x1) <�(x1; x2) < � � � < �(xs�1; xs). Furthermore:i) l(�) = l� jSj;ii) xs = �(S);



126 Chapter 5. Combinatorial poset theoreti formulaeiii) d1(S; l) = jfi 2 [s℄ : xi�1 < xigj;iv) d2(S) = 12 (l � l(xs)� l(�)).Proof. For S = fi1; : : : ; ikg< � [l℄ let fj1; : : : ; jsg< := [l℄ n S andxi := Rji � � �Rj2Rj1(v)for i = 0; : : : ; s, where Ri := Ml � � �Mi � � �Ml for i 2 [l℄. Then xi = Rji(xi�1)and hene �(xi�1; xi) = ji for i 2 [s℄. Clearly s = l � k andxi = Rji � � �Rj2Rj1Ml � � �M1(e)= Ml � � �Mji � � �Mj2 � � �Mj1 � � �M1(e)= Ml � � �Mji+1(y);where y = �(S \ [ji � 1℄), for eah i 2 [s℄. Hene xs = �(S) and, for i 2 [s℄,xi�1 < xi if and only ifRji(xi) =Ml � � �Mji(y) < Ml � � �Mji+1(y) = xiwhih, by Proposition 5.2.3, happens if and only ifMji(y)C ynamely if and only if "ji(S) = 1. This proves iii).Finally, by ii),l(xs) = k � 2jfa 2 [k℄ : MiaMia�1 � � �Mi1(e)CMia�1 � � �Mi1(e)gj= k � 2 Xa2[k℄ "ia(S)= k � 2d2(S):It is lear that this map S 7! (x0; x1; : : : ; xs) is a bijetion. �Combining Theorems 5.2.4 and 5.1.4 we obtain the following result.Corollary 5.2.5 Let v 2 W , and (M1; : : : ;Ml) be a B-regular sequene for v.Then, for all u � v, eRu;v(q) =X� ql(�)



5.3 R-regular sequenes 127where � runs over all the direted paths u = xs ! : : :! x2 ! x1 ! x0 = v inthe B-graph of [e; v℄ suh that �(x0; x1) < �(x1; x2) < : : : < �(xs�1; xs). �In the ase that the B-regular sequene omes from a redued expressionCorollary 5.2.5 is losely related to (but not implied by) Corollary 3.4 of [33℄.We illustrate Corollary 5.2.5 with an example. Consider the B-regular se-quene (M1; : : : ;M5) illustrated in Figure 5.1. Then by Corollary 5.2.5 we an�read o�� from the orresponding B-graph (Figure 5.2) that, for example,eRe;v(q) = q5 + 2q3 + q;orresponding to the direted paths from e to v having sequenes of labels(5; 4; 3; 2; 1), (5; 3; 2), (4; 3; 1) and (3).Combining Theorem 5.2.4 with Corollary 5.1.9 we obtain the following result,whih appears to be new even in the ase that the B-regular sequene omesfrom a redued deomposition.Corollary 5.2.6 Let (W;S) be a nonnegative Coxeter system, v 2 W , and(M1; : : : ;Ml) be a B-regular sequene for v. Then there is a subset E of the setof (undireted) paths � = (x0; x1; : : : ; xl(�)) in the B-graph of [e; v℄ satisfyingx0 = v and �(x0; x1) < �(x1; x2) < � � � < �(xl(�)�1; xl(�)), suh thatPu;v(q) = Xf�2E: xl(�)=ug q 12 (l(u;v)+l(�)�2d(�))for all u � v, where d(�) = jfi 2 [l(�)℄ : xi�1 > xigj. �Note that the subset E an be determined using the algorithm in Setion 5.1and Theorem 5.1.8.5.3 R-regular sequenesIn this setion we generalize to a ombinatorially invariant setting what is prob-ably the most expliit non-reursive formula known for Kazhdan-Lusztig poly-nomials whih holds in omplete generality, namely Theorem 7.3 of [14℄. Inthe following two subsetions we introdue the preliminary results that will beneeded in the third subsetion.



128 Chapter 5. Combinatorial poset theoreti formulae5.3.1 Re�etion orderingsLet (G;S) be any Coxeter system. Following [33℄ we say that a total ordering �of the set of re�etions T ofG is a re�etion ordering if, for any dihedral re�etionsubgroup (G0; fa; bg), where a; b are the anonial generators of G0, we have thateither a � aba � ababa � � � � � babab � bab � b or b � bab � � � � � aba � a. Itan be proved that suh orderings always exist (see [33℄).Let � be a re�etion ordering, and s 2 S. We de�ne a total ordering �son T as follows. For t1; t2 2 T we set t1 �s t2 if and only if either one of thefollowing onditions apply:1. t1; t2 � s and t1 � t2;2. t1; t2 � s and st1s � st2s;3. t1 � s � t2;4. t2 = s.Similarly, we de�ne�s by letting t1 �s t2 if and only if either one of the followingonditions is satis�ed:1. t1; t2 � s and st1s � st2s;2. t1; t2 � s and t1 � t2;3. t1 � s � t2;4. t1 = s.It an be proved (see Poposition 2.5 of [33℄) that these orders are well-de�nedand that they are still re�etion orderings. Note that(�s)s =�s : (5.18)5.3.2 Chains and lattie pathsFor j 2 Q we de�ne an operator Lj : C [q℄ ! C [q℄ by lettingLj�Xi�0 aiqi� := X0�i�j aiqi:



5.3 R-regular sequenes 129Following [14℄, given a hain C = x0 < x1 < � � � < xn in W of length l(C) := n,we de�ne Rx0;:::;xn(q) := Rx0;x1(q)L d�12 (Rx1;:::;xn(q));where d := l(x1; xn), if n � 2 andRx0;:::;xn(q) := Rx0;xn(q);if n = 1, where the right-hand side is the usual R-polynomial. The polynomialRx0;:::;xn(q) is alled the R-polynomial of the hain x0 < x1 < � � � < xn. Thefollowing result appeared in [14, Theorem 4.1℄ and is a non-reursive formulafor Kazhdan-Lusztig polynomials in terms of the R-polynomials of a hain.Theorem 5.3.1 Let W be a Coxeter group and u; v 2 W , u � v. ThenPu;v(q) � ql(u;v)Pu;v(q�1) = XC2C(u;v)(�1)l(C)RC(q);where C(u; v) is the set of all hains from u to v.Reall that a omposition of n 2 P is a sequene (�1; : : : ; �s) (for some s 2P) of positive integers suh that �1 + : : : + �s = n. When writing ompo-sitions we will sometimes omit to write the parentheses (i.e., we will write�1; : : : ; �s instead of (�1; : : : ; �s)). For n 2 P we let Cn be the set of allompositions of n and C := Sn�1 Cn. Given � 2 C we denote by l(�) thenumber of parts of �, by �i, for i = 1; : : : l(�), the i-th part of � (so that� = (�1; �2; : : : ; �l(�))), and we let j�j := Pl(�)i=1 �i, � := (�2; �3; : : : ; �l(�)) (ifl(�) � 2), �� := (�l(�); : : : ; �2; �1), T (�) := f�r; �r + �r�1; : : : ; �r + : : : + �2gwhere r := l(�). Given (�1; : : : ; �s); (�1; : : : �t) 2 Cn we say that (�1; : : : ; �s)re�nes (�1; : : : �t) if there exist 1 � i1 < i2 < � � � < it�1 � s suh thatPikj=ik�1+1 �j = �k for k = 1; : : : ; t (where i0 := 0, it := s). We then write(�1; : : : ; �s) � (�1; : : : �t). It is easy to see that the map � 7! T (�) is an iso-morphism from (Cn;�) to the Boolean algebra of subsets of [n� 1℄ ordered byreverse inlusion.Let n 2 N. By a lattie path of length n we mean a funtion � : [0; n℄ ! Zsuh that �(0) = 0 and j�(i)� �(i� 1)j = 1



130 Chapter 5. Combinatorial poset theoreti formulaefor all i 2 [n℄. Given suh a lattie path � we letN(�) := fi 2 [n� 1℄ : �(i) < 0g;d+(�) := jfi 2 [0; n� 1℄ : �(i+ 1)� �(i) = 1gj;l(�) := n, and ��0 := l(�) � 1 � jN(�)j. We all N(�) the negative set of �,and l(�) the length of �. Note that n =2 N(�) and thatd+(�) = �(n) + n2 : (5.19)Let L(n) denote the set of all lattie paths of length n. Given S � [n�1℄ we letH(S; n) := f� 2 L(n) : N(�) � Sg;and E(S; n) := f� 2 L(n) : N(�) = Sg:For � 2 Cn we de�ne two polynomials 	�(q);��(q) 2 Z[q℄ by letting	�(q) := (�1)n X�2H(T (�);n)(�q)d+(�); (5.20)and ��(q) := (�1)n�l(�) X�2E(T (�);n)(�q)d+(�):Note that the de�nitions imply that	�(q) = X���(�1)l(�)��(q):Hene, by the Priniple of Inlusion-Exlusion,��(q) = X���(�1)l(�)	�(q): (5.21)The next result gives the R-polynomial of a hain in terms of the usual ~R-polynomials and its proof an be found in [14, Proposition 7.1℄.



5.3 R-regular sequenes 131Proposition 5.3.2 Let x0 < x1 < : : : < xn be a hain in W . ThenRx0;:::;xn(q) = X�2Pn q l(x0;xn)�j�j2 	�(q) nYr=1[q�r ℄( eRxr�1;xr): (5.22)5.3.3 Poset theoreti formulaLet v 2 W , and M := (M1; : : : ;Ml) be a regular sequene for v. We denoteby PM the set of palindromes in the alphabet fM1; : : : ;Mlg, i.e. words of theform Mi1 � � �Mik�1MikMik�1 � � �Mi1 with i1; : : : ; ik 2 [l℄. We say that M is are�etion regular sequene, or simply an R-regular sequene, for v, if:i) for p1; p2 2 PM, if p1(u0) = p2(u0) for some u0 2 [e; v℄ then p1(u) = p2(u)for all u 2 [e; v℄ for whih both sides are de�ned;ii) for p1; p2; : : : ; pn 2 PM, if pi and pi+1 oinide on a point, for eah i =1; : : : ; n� 1, then p1 and pn oinide where they are both de�ned;iii) M admits a re�etion labeling.We now de�ne re�etion labelings. De�ne an equivalene relation � on PM byletting p1 � p2 if there exists u0 2 [e; v℄ suh that p1(u0) = p2(u0) and taking thetransitive losure. Note that this is stronger than requiring that p1(u) = p2(u)for all u 2 [e; v℄ for whih both sides are de�ned. We denote by RM := PM= �the quotient set. If p 2 PM we let p be the orresponding lass in RM. Notethat, for eah i; j 2 [l℄, Mi = Mj if and only if Mi(e) = Mj(e). Therefore, byLemma 5.1.1, we may identify fMi : i 2 [l℄g with the set of atoms of [e; v℄. Wesay that an element r 2 RM is de�ned on some u 2 [e; v℄ if p(u) is de�ned forsome p 2 r. In this ase we write r(u) := p(u). Now let (W 0; S0) be anotherCoxeter system and T 0 be its set of re�etions. A re�etion labeling of RM in(W 0; S0) is a map L : RM ! T 0 suh that:a) fL(Mi) : i 2 [l℄g = S0;b) L(Mi1 � � �Mik � � �Mi1) = L(Mi1) � � �L(Mik) � � �L(Mi1) for all i1; : : : ; ik 2[l℄;) If r1; r2 2 RM, r1 6= r2, are both de�ned on some u 2 [e; v℄ then L(r1) 6=L(r2):In partiular jS0j equals the number of atoms of [e; v℄.



132 Chapter 5. Combinatorial poset theoreti formulaeIt is not hard to see that R-regular sequenes always exist. In fat, if v =s1 � � � sl is a redued expression for v then M := (�1; : : : ; �l) is learly a regularsequene for v satisfying i) and ii). If we denote by W 0 the paraboli subgroupofW generated by fsi : i 2 [l℄g and by T 0 its set of re�etions, then the map L :PM �! T 0 de�ned by �i1 � � � �ik � � � �i1 7! si1 � � � sik � � � si1 learly fators throughRM to a re�etion labeling. Similarly for (�l; : : : ; �1). Thus, the onept of anR-regular sequene is a generalization of that of a redued deomposition.Although this is not obvious from the de�nition, an R-regular sequene isalso B-regular.Proposition 5.3.3 Let v 2 W and M be an R-regular sequene for v. ThenM is B-regular.Proof. Let M := (M1; : : : ;Ml) and �x i 2 [l℄. We will show thatMi(x) 6=Mi�1 � � �Mi�k � � �Mi�1(x)for all k 2 [i�1℄ and all x 2 [e; v℄ for whih both sides are de�ned, and the resultwill follow from the remarks following the de�nition of a B-regular sequene inSetion 5.2.Suppose, by ontradition, that there are x 2 [e; v℄ and k 2 [i � 1℄ suhthat Mi(x) =Mi�1 � � �Mi�k � � �Mi�1(x). Sine M is R-regular this implies, byondition i), that Mi(y) =Mi�1 � � �Mi�k � � �Mi�1(y) for all y 2 [e; v℄ for whihboth sides are de�ned. Let (v0; : : : ; vl) be the regular hain assoiated to M.Then, in partiular,vi =Mi(vi�1) =Mi�1 � � �Mi�k � � �Mi�1(vi�1) =Mi�1 � � �Mi�k+1(vi�k�1):Thereforei = l(vi) = l(Mi�1 � � �Mi�k+1(vi�k�1)) � l(vi�k�1) + k � 1 = i� 2;whih is a ontradition. �Note that the onverse of the above proposition is not true. For example, letW = S(4) and v = 3421. Then it is easy to hek that M := (�2; �3; �2; �1; �2)is a B-regular sequene for v. However,M is not R-regular sine �2(e) = �2(e)but �2(1243) 6= �2(1243), so ondition i) does not hold.If L : RM ! T is a re�etion labeling and � is a re�etion ordering on Twe write, for brevity, �i:=�L(Mi) and �i:=�L(Mi).



5.3 R-regular sequenes 133Let w 2W ,M an R-regular sequene for v, and L : RM ! T 0 be a re�etionlabeling. We de�ne a labeled direted graph, that we all the R-graph of [e; v℄with respet toM, as follows. The R-graph has [e; v℄ as vertex set and, for anyx; y 2 [e; v℄, x r�! y if and only if l(y) > l(x) and y = r(x), for some r 2 RM.Note that, by Corollary 5.2.2, the R-graph is a direted subgraph of the Bruhatgraph.If � = (x0 r1�! x1 r2�! � � � rk�! xk) is a path in the R-graph we writeE(�) := fr1; : : : ; rkg and if � is a re�etion ordering on T 0 we letD(�; L;�) := fi 2 [k � 1℄ : L(ri) � L(ri+1)g: (5.23)Finally, we de�ne an element R� in the inidene algebra of [e; v℄ by lettingR�(x; y) := Xf�2B(x;y):D(�;L;�)=;gql(�)where B(x; y) denotes the set of all paths in the R-graph from x to y.We an now prove the �rst main result of this setion. It is a �global version�of Corollary 5.2.5 and generalizes Corollary 3.4 of [33℄.Theorem 5.3.4 Let v 2 W , M = (M1; : : : ;Ml) be an R-regular sequene forv, L : RM ! T be a re�etion labeling and � a re�etion ordering on T . TheneRx;y(q) = R�(x; y)for all x � y � v.Proof. We proeed by indution on l(y) the statement being trivial for l(y) = 0.Assume that l(y) > 0. By Lemma 5.1.1 there is i 2 [l℄ suh that Mi(y)C y.Let, for brevity, M :=Mi. For all x0; y0 � y we letf�(x0; y0) := X�2Bi(x0;y0) ql(�)and g�(x0; y0) := X�2B0i(x0;y0) ql(�);where Bi(x0; y0) := f� 2 B(x0; y0) : L(M) � L(E(�)) and D(�; L;�) = ;gand B0i(x0; y0) := f� 2 B(x0; y0) : L(M) � L(E(�)) and D(�; L;�0) = ;g,where �0:=�L(M).



134 Chapter 5. Combinatorial poset theoreti formulaeWe laim thatf�(x; y) = ( g�(Mx;My); if MxC x;g�(Mx;My) + qg�(x;My); otherwise; (5.24)andg�(x; y) = ( f�(Mx;My) + q (g�(x;My)� f�(x;My)) ; if MxC x;f�(Mx;My) + qg�(x;My); otherwise;(5.25)where, for all x � y, we write Mx instead of M(x).We prove only the ases Mx C x in equations (5.24) and (5.25), the asesMxB x being similar. So suppose MxC x.Let � = (x0 r1�! x1 r2�! � � � rk�! xk) 2 Bi(x; y). Then M =2 E(�) and thepath �0 = (Mx0 rM1�! Mx1 rM2�! � � � rMk�! Mxk), where rM := MpM for some(any) p 2 r belongs to B0i(Mx;My). Conversely, every path in B0i(Mx;My)arises in this way as it annot have labels M sine M(y) C y. This proves thease MxC x of (5.24).Now let � = (x0 r1�! x1 r2�! � � � rk�! xk) 2 B0i(x; y). If M 2 E(�) thenneessarily M = rk. Hene �0 = (x0 r1�! x1 r2�! � � � rk�1�! xk�1) 2 B0i(x;My).Furthermore, every path in B0i(x;My) annot have M as a label and henearises in this way from a path � 2 B0i(x; y) suh that M 2 E(�). SoXf�2B0i(x;y) :M2E(�)g ql(�) = qg�(x;My): (5.26)If M =2 E(�) then �0 = (Mx0 rM1�! Mx1 rM2�! � � � rMk�! Mxk) 2 Bi(Mx;My).Moreover, any path �0 2 Bi(Mx;My) with M =2 E(�0) arises in this way.Hene Xf�2B0i(x;y):M=2E(�)g ql(�) = f�(Mx;My)� Xf�2Bi(Mx;My):M2E(�)g ql(�): (5.27)Now let � = (x0 r1�! x1 r2�! � � � rk�! xk) 2 Bi(Mx;My) be suh that M 2E(�). Then neessarily M = r1 and hene �00 = (x1 r2�! x2 r3�! � � � rk�! xk) 2Bi(x;My). Furthermore, every path in Bi(x;My) annot haveM as a label andhene arises in this way from a path � 2 Bi(Mx;My) suh that M 2 E(�).



5.3 R-regular sequenes 135Therefore Xf�2Bi(Mx;My):M2E(�)g ql(�) = qf�(x;My)and this, together with (5.26) and (5.27), onludes the proof of the aseMxCxof (5.25).Now let h�(x; y) := Xf�2B(x;y):L(E(�))�L(M);D(�;L;�)=;g ql(�):Then it is lear that R� = h�f� and R�0 = h�g� (5.28)in the inidene algebra of [e; y℄. We laim that f�(x; y) = g�(x; y) for all x � y.In fat, by (5.28) and our indution hypothesis we have thatf�(z;My) = (h�1R�)(z;My) = (h�1R�0)(z;My) = g�(z;My) (5.29)for all z �My and the laim follows by (5.24) and (5.25).Therefore, by (5.28), we haveR�(x; y) = R�0(x; y)and, sine (�i)i =�i R�i(x; y) = R�0(x; y):Now notie that f�i(x; z) = R�i(x; z) for all x; z � y (sine L(M i) �i L(E(�))is an empty ondition) and hene, by (5.24) and (5.29)R�i(x; y) = ( R�i(Mx;My); if MxC x;R�i(Mx;My) + qR�i(x;My); otherwise;and the thesis follows by Corollary 0.5.3 and our indution hypothesis. �Now �x v 2 W , an R-regular sequene M for v, a re�etion labeling L :RM ! T 0 and a re�etion ordering � on T 0. Let � 2 B(x; y), where x �y � v. We de�ne the desent omposition of � with respet to � to be theunique omposition C(�; L;�) := (b1; : : : ; bj) suh that b1+ : : :+ bj = l(�) and



136 Chapter 5. Combinatorial poset theoreti formulaeD(�; L;�) = fb1; b1 + b2; : : : ; b1 + : : :+ bj�1g.For x; y � v, and � 2 C, we let�(x; y) := jf� 2 B(x; y) : l(�) = j�j and C(�; L;�) � �gj; (5.30)and b�(x; y) := jf� 2 B(x; y) : l(�) = j�j and C(�; L;�) = �gj: (5.31)Note that these de�nitions imply that�(x; y) = X��� b�(x; y) (5.32)for all x; y � v and � 2 C, and that�(x; y) = b�(x; y) = jf� 2 B(x; y) : l(�) = j�j and D(�; L;�) = ;gj (5.33)if l(�) = 1.The proof of the following result is analogous to that of Proposition 4.4of [13℄ and is therefore omitted.Proposition 5.3.5 Let x � y � v, and � 2 C. Then�(x; y) = X(x0;:::;xr)2Cr(x;y) rYj=1[q�j ℄( eRxj�1;xj )where Cr(x; y) denotes the set of all hains of length r from x to y, and r :=l(�) �.We an now state and prove the seond main result of this setion, whihgeneralizes the main result of [14℄ (Theorem 7.2). Reall the de�nition of thepolynomials 	�(q) and ��(q) from Subsetion 5.3.2.Theorem 5.3.6 Let v 2 W , M be an R-regular sequene for v, L : RM ! T 0be a re�etion labeling and � be a re�etion ordering on T 0. Then, for allx � y � vPx;y(q)� ql(x;y) Px;y �1q� = X�2B(x;y) q l(x;y)�l(�)2 �C(�;L;�)(q): (5.34)



5.3 R-regular sequenes 137Proof. From Theorem 5.3.1 and Propositions 5.3.2 and 5.3.5 we have thatPx;y(q)� ql(x;y)Px;y �1q� = XC2C(x;y)(�1)l(C)RC(q)= X�2C(�1)l(�) q l(x;y)�j�j2 	�(q) �(x; y):On the other hand, from (5.32) and (5.21) we obtainX�2Cn(�1)l(�)	�(q) �(x; y) = X�2Cn(�1)l(�)	�(q) X��� b�(x; y)= X�2Cn b�(x; y) X���(�1)l(�)	�(q)= X�2Cn b�(x; y)��(q);for all n 2 P. Therefore we onlude thatPx;y(q)� ql(x;y)Px;y �1q� = X�2C q l(x;y)�j�j2 ��(q) b�(x; y);whih, by (5.31), is equivalent to (5.34). �In the same way as Theorem 7.3 is dedued from Theorem 7.2 in [14℄ oneobtains the following result from Theorem 5.3.6 . Given n 2 Z and A � Z welet n � A := fn � a : a 2 Ag. Reall our notations onerning lattie pathsfrom Subsetion 5.3.2..Corollary 5.3.7 Let v 2 W , M be an R-regular sequene for v, L : RM ! T 0be a re�etion labeling and � be a re�etion ordering on T 0. Then, for allx � y � v, Px;y(q) = X(�;�)(�1)��0+d+(�)q l(x;y)+�(l(�))2where the sum is over all pairs (�;�) suh that � is a lattie path, � 2 B(x; y),l(�) = l(�), N(�) = l(�)�D(�; L;�), and �(l(�)) < 0. �





Chapter 6Speial mathings of S(n)form a Coxeter groupThe proof of Lusztig's onjeture for lower Bruhat intervals (Corollary 4.4.8)uses the fundamental onept of speial mathings of a partially ordered set,and follows from the study of all possible ommutation relations between twosuh mathings. In this hapter we study with muh more detail the relationsbetween speial mathings of intervals of the form [e; v℄, where v 2 S(n). In fat,the main result of this hapter (Theorem 6.2.1) is that all the possible relationsbetween speial mathings are onsequenes of the ommutation relations amongthem. Or, whih is the same, it states that the group Wv generated by the setSv of all the speial mathings of a permutation v is again a Coxeter group withSv as set of Coxeter generators. Furthermore the Coxeter system (Wv ; Sv) isisomorphi to a diret produt of symmetri groups.6.1 The ommutation graphWe start this setion with two tehnial lemmas that will later be needed.Lemma 6.1.1 is in the spirit of Lemma 1.1.1.Lemma 6.1.1 Let (W;S) be any Coxeter system and let J;K � S with J \K = ;. Suppose that w = wjwk, with wj 2 WJ and wk 2 WK , and thatsj 2 J \DR(w). Then sj 2 DR(wj) and sj ommutes with every letter in wk.139



140 Chapter 6. Speial mathings of S(n) form a Coxeter groupProof. We proeed by indution on l(wk), the assertion being lear if l(wk) = 0.So suppose l(wk) � 1 and let s 2 DR(wk). By the Lifting Lemma (Lemma 0.3.4),sj 2 DR(ws), and we an onsider the fatorization ws = wj wks, with l(wks) <l(wk). So, by indution hypothesis, sj ommutes with every letter in wks,namely with every letter in wk exept at most s. Suppose, by ontradition,that sj does not ommute with s. By Lemma 0.3.5, w admits a redued expres-sion of the form w0�s;sj where �s;sj has more than two letters. Hene s � wsand this fores s � wks; but this is a ontradition beause we have alreadyproved that sj ommutes with every letter in wks. �Clearly, a dual version of Lemma 6.1.1 holds.Lemma 6.1.2 Let (W;S) be any Coxeter system, and let w 2 W and K � S.Suppose that s 2 DL(w) but s =2 K. Then s 2 DL(Kw).Proof. Reall the fatorization of Proposition 0.3.7: w = wK Kw. We proeedby indution on l(wK), the assertion being lear if l(wK) = 0.Suppose l(wK) � 1 and let s0 2 DL(wK). By the Lifting Lemma (Lemma 0.3.4),s 2 DL(s0w), and we an onsider the fatorization s0w = s0wK Kw, withl(s0wK) < l(wK). So, by indution hypothesis, s 2 DL(Kv). �Clearly, a dual version of Lemma 6.1.2 holds.We also need the following result about the length of dihedral intervals inthe symmetri group.Proposition 6.1.3 Let u; v 2 S(n), u � v, be suh that the interval [u; v℄ isdihedral. Then l(u; v) � 3.Proof. By Lemma 4.1.1 it follows that the group W 0 generated by the set ofre�etions fab�1 : u � a C b � vg is a dihedral re�etion subgroup. By The-orem 1.4 of [32℄, it follows that the interval [u; v℄ is isomorphi, as a partiallyordered set, to a subset of W 0. The statement follows sine dihedral re�etionssubgroups of the symmetri group are of length at most 3. �Remark. In general, Proposition 6.1.3 an be false even if all the entries ofthe Coxeter matrix are � 3. A ounterexample an be found even in eA2, theCoxeter group of Coxeter generators s1, s2, s3 with m(si; sj) = 3 for all i 6= j.In fat, for example, [s1s2s3; s2s1s3s2s1s3s2℄ is a dihedral interval of length 4.



6.1 The ommutation graph 141From now on we all a dihedral interval of length 1, 2 and 3 respetively asegment, a square and a hexagon.Proposition 6.1.4 Let v 2 S(n), M and N be two speial mathings of v, andlet u0 � v.1. If hM;Ni(u0) is a hexagon then hM;Ni(u) is a hexagon for all u � v.2. If hM;Ni(u0) is either a segment or a square then hM;Ni(u) is a segmentor a square for all u � v.Proof. Atually 1. and 2. are equivalent by Lemma 4.2.2 and Proposition 6.1.3.Let us prove 1.With no lak of generality, we an suppose that u0 is the top element of anorbit. We �rst prove the statement for u � u0 by indution on l(u0). Supposethat there exists u1 C u0, u1 =2 fM(u0); N(u0)g, suh that u � u1. Then,by Proposition 4.2.3, hM;Ni(u1) is a hexagon and we an onlude by ourindution hypothesis. If suh u1 does not exist, by Corollary 4.1.3, [u; v℄ is adihedral interval ontaining M(u0) and N(u0). Then, by Theorem 4.1.2 andProposition 6.1.3, u 2 hM;Ni(u0) and we are done. In partiular we have thathM;Ni(e) is a hexagon. An upside-down argument with u0 = e shows thathM;Ni(u) is a hexagon for all u � e and the proof is omplete. �Now we an onlude that the ommutation rules of speial mathings reallylook like the Coxeter relations for the symmetri group.Corollary 6.1.5 Let v 2 S(n), M and N be two speial mathings of v. Theneither MN = NM or MNM = NMN .Proof. It is straightforward by Proposition 6.1.4. �Now we fous our attention to non-ommuting pairs of speial mathings.To see that two speial mathings M and N do not ommute it is enough tohek that MN(e) 6= NM(e), by Proposition 6.1.4. It follows that any speialmathing does not ommute with at most 4 other speial mathings.speial mathings does not ommute with�i �i�1; �i+1; li�1; ri+1�i �i�1; �i+1; ri�1; li+1li ri�1; ri+1; �i+1; �i�1ri li�1; li+1; �i�1; �i+1



142 Chapter 6. Speial mathings of S(n) form a Coxeter groupWe shall see that the situation is atually muh simpler. We de�ne the ommu-tation graph of the speial mathings of v to be the graph G = (V;E) where Vis the set of speial mathings of v and E is the set of non-ommuting pairs ofspeial mathings. For what we have proved so far, if v 2 S(7), its ommutationgraph an be obtained from the graph in Figure 6.1 by deleting some vertiesand the orresponding adjaent edges. Note that the speial mathings l1, l6,r1, and r6 do not appear in this graph sine they are neessarily also of type �or �.PSfrag replaements
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Figure 6.1: Speial mathings in S(7)Lemma 6.1.6 Let v 2 S(n).1. If li; ri+1 are both speial mathings of v, then v = v0sisi+1si, with v0 2S(n)Snfi;i+1g.2. If ri; li+1 are speial mathings of v, then v = sisi+1siv00, with v00 2S(n)Snfi;i+1g.Proof. We prove only 1. beause 2. is its dual statement.Let u 2 [e; v℄ be suh that li(u) > u and ri+1(u) > u. We show that si+1 � u.Let J := [i℄ and K := [i; n � 1℄, and deompose u = uJ Ju, where, by Corol-lary 0.7.5, Ju 2 S(n)K . We have si+1si+2 � Ju, otherwise sisi+1si+2 � li(u) �



6.1 The ommutation graph 143v whih ontradits 2. of Corollary 0.7.4. Hene, if si+1 � Ju, we have thatJu = u1si+1u2 with u1 2 S(n)[i+2;n�1℄ and u2 2 S(n)fig. So u = uJ Ju =uJu1si+1u2 and hene, by Corollary 0.7.5, ri+1(u) = u1si+1uJsi+1u2 whih im-plies sisi�1 � uJ , by Corollary 0.7.4. Sine li(u) B u this fores si � uJ andhene ri+1(u) < u.A symmetri argument shows that si � u.Note that, sine hli; ri+1i(e) is a hexagon all the orbits of the group hli; ri+1iare hexagons by Proposition 6.1.4. Suppose u is the bottom element of thehexagon ontaining v so that v = liri+1li(u). We know that u = u1u2 withu1 2 S(n)[i�1℄ and u2 2 S(n)[i+2;n�1℄. Thenv = liri+1li(u) = liri+1(u1siu2) = li(u2si+1u1si)= u1siu2si+1si = u1u2sisi+1siand we are done. �Theorem 6.1.7 Let v 2 S(n).1. If li and ri+1 are two speial mathings of v thenli ri+1d dis a onneted omponent of the ommutation graph of the speial math-ings of v.2. If ri and li+1 are two speial mathings of v thenri li+1d dis a onneted omponent of the ommutation graph of the speial math-ings of v.Proof. We prove only 1. beause 2. is its dual statement.Figure 6.2 shows all possible neighbors of the speial mathings li and ri+1 inthe ommutation graph (see Figure 6.1).Reall that, by Lemma 6.1.6, v = v0sisi+1si, with v0 2 S(n)Snfi;i+1g.If �i+1 is a speial mathing of v then, by Lemma 6.1.1, si+2 � v whih fores



144 Chapter 6. Speial mathings of S(n) form a Coxeter groupPSfrag replaements �i+1
�ili li+2�i+2ri�1 ri+1�i�1Figure 6.2: Neighbors of li and ri+1�i+1 = ri+1. If �i is a speial mathing of v then, by Lemma 6.1.1, si�1 � vwhih implies �i = li.Again by Lemma 6.1.1, we have that �i�1 and �i+2 are not speial mathingsof v.Let us hek that li+2 and ri�1 are not speial mathings of v. We show it forli+2, the same argument being valid also for ri�1. Suppose, by ontradition,that li+2 is a speial mathing. By 2. of Lemma 6.1.6 we have that v =v0si+1si+2si+1 and v = si+1si+2si+1v00, with v0; v00 2 S(n)Snfi+1;i+2g. Butthese two deompositions of v are inompatible, sine from the seond we havei+ 1 2 DL(v) whih fores, from the �rst deomposition, si+2 � v0. But this isa ontradition with the seond one. �We go on in our analysis of the ommutation graph by showing anotherforbidden on�guration.Theorem 6.1.8 Let v 2 S(n).1. The on�guration �j�1 rj �j+1d d dis forbidden in the ommutation graph of the speial mathings of v.2. The on�guration �j�1 lj �j+1d d dis forbidden in the ommutation graph the speial mathings of v.



6.1 The ommutation graph 145Proof. We prove only 1. beause 2. is its dual statement.By ontradition, suppose that �j�1; rj and �j+1 are all speial mathings ofv. Let J = [j℄ and K = [j; n � 1℄, and deompose v = vK Kv. We laim thatsj � Kv. In fat Kvsj+1 =2 KW sine KW \ [e; v℄ � WJ \ [e; v℄ by 2. ofCorollary 0.7.5. Then, by the de�nition of KW , there exists k 2 K suh thatk 2 DL(Kvsj+1). Neessarily k = j or k = j + 1 as Kv 2WJ .If k = j we have ���������sj Kvsj+1Kvsj+1 Kv sj Kv� � � �
By the lifting lemma (Lemma 0.3.4) we should have Kvsj+1 = sj Kv. Butthis is not possible sine sj+1 � sj Kv.If k = j + 1 we have that ���������sj+1 Kvsj+1Kvsj+1 Kv sj+1 Kv� � � �and hene, by the lifting lemma, Kvsj+1 = sj+1 Kv whih implies that sj � Kvby Lemma 6.1.1. So the laim is proved.A similar argument applied to v�1 and to J , together with Corollary 0.7.5,provides that either sj � vK or vK = v0sj with sj � v0. But sine rj is a speialmathing of v we must be in the last situation. So we havev = v0sj Kvwith v0 2 W[j+1;n�1℄ and Kv 2 W[j�1℄. All these onditions are in ontraditionwith Lemma 6.1.1 (e.g. apply Lemma 6.1.1 to j + 1 2 DR(v)), and the proof isomplete. �The next result shows us how a onneted omponent of the ommutationgraph looks like.Theorem 6.1.9 Let v 2 S(n). Let �i; �i+1; : : : ; �j with j � i be speial math-ings of v and suppose that �i�1 and �j+1 are not speial mathings of v. Thentheir onneted omponent in the ommutation graph is a subgraph of



146 Chapter 6. Speial mathings of S(n) form a Coxeter groupli�1 �i�i+1...�j rj+1
d ddddd dDually, if �i; : : : ; �j are speial mathings of v and �i�1 and �j+1 are not, thentheir onneted omponent in the ommutation graph is a subgraph ofri�1�i�i+1 ... �jlj+1

dddddddProof. We only prove the �rst statement.Observe that if �k, �k+1 and rk+1 are speial mathings of v for some k thenrk+1 = �k+1. In fat, if k; k+1 2 DL(v) then, by Lemma 0.3.5, v = sksk+1skv0with l(v) = l(v0) + 3. But then, if rk+1 is a speial mathing of v, we havesk+2 � v0; otherwise sksk+1sk+2 � v, whih is not possible by Corollary 0.7.4.Hene rk+1 = �k+1. Similarly, if �k ; �k+1 and lk are speial mathings of v forsome k then lk = �k.Now we look at the possible neighbors of �i in the ommutation graph. If li�1is not a speial mathing there is nothing to prove, beause �i is adjaent onlyto �i+1. If li�1 is a speial mathing, ri�2 and ri annot be speial mathingsof v by Theorem 6.1.7, and �i�2 annot be a speial mathing of v by 2. ofTheorem 6.1.8. The analysis of the ommutation graph around �j is similarand it is left to the reader. �



6.1 The ommutation graph 147Example. Let, for 3 � i < j � n� 3 , v = si�2sj+2w where w is the longestelement in the paraboli subgroup W[i;j+1℄. Thenli�1 �i�i+1...�j rj+1
d ddddd dis atually a onneted omponent in the ommutation graph of the speialmathings of v.Our next goal is to understand if there is any further relation among thespeial mathings of a permutation v, other than the ommutation relations.In other words we want to understand if the group generated by the speialmathings is the Coxeter group whose Coxeter diagram is our ommutationgraph or a proper quotient of it. We will see that there are no further relations.Lemma 6.1.10 Let i < j. Suppose thatli�1 �i�i+1...�j
d dddddis a subgraph of a onneted omponent of the ommutation graph. Then theother onneted omponents having at least a speial mathing indexed in [i�1; j℄do not have verties with index smaller than i� 1.Clearly, dual statements hold if we hange the subgraph with one of the following



148 Chapter 6. Speial mathings of S(n) form a Coxeter group�i�i+1...�j rj+1
ddddd d

ri�1�i�i+1 ... �j
dddddd

�i�i+1 ... �jlj+1
ddddddProof. Let us hek all other possible speial mathings indexed by i� 1. Bythe proof of Theorem 6.1.9, if �i�1 is a speial mathing, then �i�1 = li�1. LetJ = [i� 1℄ and deompose v = vJ Jv. Sine li�1 is a speial mathing, we havethat si�1 2 DR(vJ ). We an assume that si�2 � vJ , otherwise we annot havespeial mathigs indexed by i � 2 and the result would be trivial. If ri�1 isa speial mathing then si�2si�1si � v by Corollary 0.7.4. Hene neessarilysi � Jv. But this is in ontradition with the fat that �i is a speial mathingand hene ri�1 is not a speial mathing. So the only other possible speialmathing indexed by i� 1 is �i�1.Note that the possible neighbours of �i�1 indexed by i � 2 are �i�2 and ri�2.But �i�2 and ri�2 are not speial mathings of v beause, otherwise, they wouldbe in the same onneted omponent of li�1 and this is in ontradition withTheorem 6.1.9. �Lemma 6.1.11 Let i < j. If�i �i+1 �j� � �d d d d dis a onneted omponent of the ommutation graph and C is another omponentwith a speial mathing indexed by i, then this speial mathing is of type � or rand if it is of type r, C does not ontain any speial mathing with index smallerthan i.Clearly, a dual statement holds.Proof. We already know that if li is a speial mathing, then it is neessarilyequal to �i. If �i is a speial mathing there is nothing to prove. So suppose



6.1 The ommutation graph 149that ri is a speial mathing. If li�1 or �i�1 are speial mathings, then theywould be in the same onneted omponent of �i, whih is a ontradition; soin the onneted omponent of ri there are no speial mathings with indexsmaller than i. �We introdue an equivalene relation on the set of onneted omponents ofthe ommutation graph. We say that two onneted omponents C and C 0 arein the same isotypial omponent if there exists a sequene C = C0; C1; : : : ; Ct =C 0 of onneted omponents suh that, for all i 2 [t℄, Ci�1 and Ci ontain atleast one speial mathing with the same index. Then Lemmas 6.1.10 and 6.1.11tells us that speial mathings of type l and r have external indies in isotypialomponents.Corollary 6.1.12 Let I be an isotypial omponent of the ommutation graphand suppose that all the speial mathings in I are indexed in [i; j℄. Then allthe speial mathings of I indexed in [i+ 1; j � 1℄ are of type � or �.Proof. It follows diretly from Lemma 6.1.10 and 6.1.11. �This is an example of how an isotypial omponent looks like.d ddddddd
�7�8�9�10

dddddd
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150 Chapter 6. Speial mathings of S(n) form a Coxeter group6.2 The Coxeter group WvGiven v 2 S(n), we de�ne Wv to be the group generated by the set Sv of allspeial mathings of v. In this setion, we analyze the struture of the groupWv . Our goal is to show that the pair (Wv ; Sv) is again a Coxeter system.Theorem 6.2.1 Let v 2 S(n), Sv be the set of all speial mathings of v andWv be the group generated by Sv. Then(Wv ; Sv)is a Coxeter system isomorphi to a diret produt of symmetri groups.Proof. Let p be a word in the alphabet of the speial mathings of v suhthat p(u) = u for all u � v (in other words, p is the identity in Wv). The resultwill follow if we show that we an obtain the empty word from p using onlybraid moves either of the formMNM $ NMN (ifM and N do not ommute),or of the form MN $ NM (if M and N do ommute), and nil moves of theform MM = ;. Suppose that I is an isotypial omponent whose set of indiesis [i; j℄. Then, by Corollary 6.1.12, after ommutation of some letters, we maysuppose that p = p1p2p3, where:- p1 is a word in hi; �i+1: : : : ; �j�1; hj with hi equal to li or �i and hj equal torj or �j ;- p2 is a word in ki; �i+1; : : : ; �j�1; kj , with ki equal to ri or �i and kj is equalto lj or �j ;- p3 is a word involving speial mathings whih are not indexed in [i; j℄.It is lear that it is enough to prove our laim for p1 and p2, the general re-sult following by indution on the number of isotypial omponents. Theseonditions imply that p1p2 = p�13 . In partiular we have p1p2(e) = p�13 (e).But p1p2(e) 2 S(n)[i;j℄ and p�13 (e) 2 S(n)[1;i�1℄[[j+1;n�1℄ and hene p1p2(e) =p�13 (e) = e. Moreover, for all sh � v we have p1p2(sh) 2 S(n)[i;j℄[fhg andp�13 (sh) 2 S(n)[i;i�1℄[[j+1;n�1℄[fhg and hene p1p2(sh) 2 fe; shg. Sine p1p2 isa bijetion we have p1p2(sh) = sh.We �rstly deal with the ase i = j. Let � := p1p2. We an learly assume that �is a subword of �i�iliri of even length, sine �(e) = e. If si�1 � v and si+1 � v,then li = �i and ri = �i, so � is a subword of �i�i. But �i�i(si�1) 6= si�1 and



6.2 The Coxeter group Wv 151hene � is the empty word. If si�1 � v and si+1 � v, the proof is very similar.If si�1 � v and si+1 � v there is at most one speial mathing indexed by i andthe result follows. So we an assume that si�1 � v and si+1 � v. If li is a spe-ial mathing, then li(si�1si+1) = si�1sisi+1 whih implies, by Corollary 0.7.4,that ri is not a speial mathing. But the only subword of �i�ili that at as theidentity on both si�1 and si+1 is the empty word and we are done. The otherpossible ases are similar and hene are left to the reader.So we an assume i < j, and we restrit our attention on P := S(n)[i;j℄ \ [e; v℄.Note that for all u 2 P we have hi(u) = siu, hj(u) = sju, ki(u) = usi, andkj(u) = usj so that we an �think� of the h and the k as, respetively, � and� (and the ommutation relations do not hange!). Thus, if si1 � � � sik is a re-dued expression of p2(e), we may obtain, using only the ommutation relations,p�11 = �i1 � � ��ik and p2 = �ik � � � �i1 , so that p�11 ats on P by multiplying onthe left by u := si1 � � � sik (this being a redued expression) and p2 ats on Pby multiplying on the right by u. Sine p2(sh) = p�11 (sh) for all h 2 [i; j℄ thisimplies that u belongs to the enter of S(n)[i;j℄. The result follows sine theenter of S(n)[i;j℄ is trivial. �Example. Let v = (3 1 6 4 2 5) 2 S(6). Then v admits the following reduedexpression v = s2s3s1s5s4s3. One may hek that the interval [e; v℄ has exatly6 distint speial mathings and these are �2; �5; �1; �3; �4; l3 and r4. Then theommutation graph of v is ddd
�2�5�1dd�3�4 ddl3r4and the groupWv generated by these speial mathings is isomorphi to S(3)2�S(2)3.Remark Theorem 6.2.1 annot be generalized to arbitrary Coxeter groups. LetW be the dihedral group generated by a and b with m(a; b) > 4 and onsiderw = abab. Then [e; w℄ is a dihedral interval of length 4. Consider the speialmathings in Figure 6.3.
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PSfrag replaements M1M2M3M4
Figure 6.3: dihedral of length 4Call M1 the dashed mathing, M2 the dotted mathing, M3 the dash-dottedmathing and M4 the dash-dot-dotted mathing. Then M4M3M2M1 is theidentity as appliation from [e; w℄ to itself but it is learly not a Coxeter relation.



Chapter 7Kazhdan-Lusztig polynomialsfor arbitrary posetsThis hapter is organized around the problem of generalizing the de�nition ofR-polynomials (and hene eR-polynomials) and Kazhdan-Lusztig polynomials toarbitrary posets. We �nd that, in a ertain lass of posets, the onept of spe-ial mathing leads to an entirely poset theoreti de�nition of Kazhdan-Lusztigand R-polynomials. This lass of posets, whih we all diamonds, inludes thelower Bruhat intervals and the new de�nitions are obviously onsistent with thelassial de�nitions.7.1 ZironsBefore introduing the lass of diamonds, we introdue a more general lass ofpartially ordered sets, whih we all zirons. Given a poset P , we say that M isa speial mathing of an element w 2 P if M is a speial mathing of the Hassediagram of fx 2 P : x � wg. We denote by Sw the set of all speial mathingsof w.De�nition 7.1.1 We say that a loally �nite ranked poset Z is a ziron if Swis non-empty for all w 2 Z, w not minimal.Note that, given a ziron Z with rank funtion �, then jfz 2 Z : z � wgj < 1and l(fz 2 Z : z � wg) � �(w) for all w 2 Z. Figure 7.1 shows an example of aziron. 153
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Figure 7.1: a zironLet us prove some properties of zirons.Proposition 7.1.2 Let Z be a ziron with rank funtion �, and let z 2 Z. Thenjfx 2 Z : xC zgj � �(z).Proof. We proeed by indution on �(z), the ases �(z) = 0; 1 being lear.Suppose �(z) � 2. Let M be a speial mathing of z. By de�nition of spe-ial mathings, M(x) � M(z) for all x suh that x C z, x 6= M(z). Thusjfx 2 Z : x C zgj � 1 � jfx 2 Z : x CM(z)gj. But by indution hypothesis,jfx 2 Z : xCM(z)gj � �(M(z)) = �(z)� 1. �Proposition 7.1.3 Let Z be a ziron, m1 and m2 be two minimal elements inZ. Then there does not exist z 2 Z suh that z � m1 and z � m2.Proof. By ontradition, hoose a minimal element z among those greaterthan both m1 and m2. By the de�nition of ziron, there exists a speialmathing M of z. By the Lifting Lemma for speial mathings (Lemma 0.7.1),M(z) � m1;m2. But M(z) � z and this is a ontradition. �Corollary 7.1.4 Any onneted ziron Z is a graded poset.Proof. By Proposition 7.1.3, Z has a 0̂. It remains to prove that, given anyz 2 Z, [0̂; z℄ is pure. But a �nite ranked poset with 0̂ and 1̂ learly satis�es theproperties of a pure poset. �Note that any Coxeter group partially ordered by Bruhat order is a onnetedziron. In fat, any Coxeter group W is ranked by the funtion length and, forall w 2W , any right or left desent of w gives a speial mathing of w.



7.1 Zirons 155Let us plung into the study of the loal struture of zirons.Proposition 7.1.5 Any interval of length 2 of a ziron Z is a square.Proof. By ontradition, let z 2 Z be an element of smallest rank suh thatit is the top of an interval [x; z℄ whih is not a square. Let M be a speialmathing of z.Case i) [x; z℄ = fx; y; zgNeessarily,M(x)Cx otherwiseM would restrit to [x; z℄ by Lemma 4.2.1, andthis is not possible beause j[x; z℄j = 3 is odd. By our indution hypothesis,[M(x); y℄ = fM(x); x; a; yg is a square. By the de�nition of speial mathing,a BM(x) implies M(a) B x. Then M(a) 2 [x; z℄ and neessarily M(a) = y.Hene M(z) 6= y and, by the Lifting Lemma (Lemma0.3.4) and by indutionhypothesis, [M(x);M(z)℄ = fM(x); a; b;M(z)g is a square. M(x) C b impliesxCM(b), hene M(b) 2 [x:z℄, M(b) 6= y, whih is a ontradition.Case ii) j[x; z℄j > 4Suppose that a; b;  2 [x; z℄ n fx; zg, all distint. If M(z) 2 [x; z℄, say M(z) =a, then M(b);M() =2 [x; z℄, otherwise by Lemma 4.2.1 M would restrit to[x; z℄. Hene by the de�nition of speial mathing, a B M(b);M(); x andM(x)CM(b);M(); x. So [M(x); a℄ is not a square and this is a ontradition bythe minimality of z. If M(z) =2 [x; z℄, then by the de�nition of speial mathingM(z) BM(a);M(b);M() and M(x) CM(a);M(b);M(). So [M(x);M(z)℄ isnot a square and this is again a ontradition. �Proposition 7.1.6 Let Z be a onneted ziron with rank funtion � and letz 2 Z. Then1. if �(z) = 3, the poset [0̂; z℄ is a 2 or 3-krown;2. if �(z) = 4, the poset [0̂; z℄ is isomorphi to one of the following posets inS(5):(a) [e; s1s2s3s4℄,(b) [e; s2s1s3s2℄,() [e; s1s2s1s3℄,or it is isomorphi to one of the two posets in Figure 7.2, or it is a dihedralinterval of length 4.
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Figure 7.2: zirons of length 4Proof. Let us prove the �rst statement. Let M 2 Sz. Propositions 7.1.2and 7.1.5 give bounds for the ardinality of fx 2 Z : xC zg, namely:2 � jfx 2 Z : xC zgj � 3:Case jfx 2 Z : xC zgj = 3.Let fx 2 Z : x C zg = fa1; a2; a3g, and M(z) = a1. By the de�nitionof speial mathings, M(a2) C a1; a2, M(a3) C a1; a3. By Proposition 7.1.5,[0̂; a2℄ is a square, and neessarily [0̂; a2℄ = f0̂;M(0̂);M(a2); a2g. By the def-inition of speial mathing, M(0̂) C a3. Clearly fx 2 [0̂; z℄ : �(x) = 1g =fM(0̂);M(a2);M(a3)g beause other elements would not be mathable. So[0̂; z℄ is a 3-krown.Case jfx 2 Z : xC zgj = 2. Let fx 2 Z : xC zg = fa1; a2g, andM(z) = a1. Bythe de�nition of speial mathings, M(a2)Ca1; a2. By Proposition 7.1.5, [0̂; a2℄is a square, and neessarily [0̂; a2℄ = f0̂;M(0̂);M(a2); a2g. Clearly fx 2 [0̂; z℄ :�(x) = 1g = fM(0̂);M(a2)g beause other elements would not be mathable.It remains to prove that M(0̂)C a1 and this follows from the fat that [0̂; a1℄ isa square.Note that [0; z℄ is a 2-krown if M(0) �M(z); it is a 3-krown otherwise.The proof of the seond statement is similar to that of the �rst one. LetM 2 Sz. Again Propositions 7.1.2 and 7.1.5 give bounds for the ardinality of



7.1 Zirons 157fx 2 Z : xC zg. Now we have2 � jfx 2 Z : xC zgj � 4:Case jfx 2 Z : xC zgj = 4.Let fx 2 Z : x C zg = fa1; a2; a3; a4g, and M(z) = a1. By the de�nition ofspeial mathings, a1BM(a2);M(a3);M(a4), so [0̂; a1℄ is a 3-krown by the �rststatement. Suppose that there is another 3-krown starting from 0̂, say [0̂; a2℄.By the de�nition of speial mathings, we have that [0̂; a1℄ \ [0̂; a2℄ is either[0̂;M(a2)℄ or [0̂;M(a2)℄[fyg, where �(y) = 1. In the �rst ase, by Lemma 7.1.5,M(0̂) 6� M(a3);M(a4), and so [0̂; a3℄ and [0̂; a4℄ are also 3-krowns. Hene (a)holds. In the seond ase, M(0̂) � M(a3);M(a4), and [0̂; a3℄ and [0̂; a4℄ are2-krowns. Hene (b) holds. It remains to prove that is not possible that [0̂; a2℄,[0̂; a3℄ and [0̂; a4℄ are all 2-krowns. This follows by noting that in this ase[0̂; a2℄ \ [0̂; a3℄ \ [0̂; a4℄ = f0̂g, and hene there are no possibilities for M(0̂).Case jfx 2 Z : xC zgj = 3.Let fx 2 Z : xCzg = fa1; a2; a3g, andM(z) = a1. Using the same tehnis, onean see that () holds either if [0̂;M(z)℄ is a 3-krown or if [0̂;M(z)℄ is a 2-krownand [0̂; a2℄ is a 3-krown. Let us analyze the ase both [0̂;M(z)℄ and [0̂; a2℄ are2-krowns. By the de�nition of speial mathings, M(z) BM(a2);M(a3). Sety C a2, y 6= M(a2). Sine [y; z℄ is a square, y C a3. Now fx 2 [0̂; z℄ : �(x) =2g = fM(a2);M(a3); yg beause, for another element y0, [y0; z℄ would not be asquare. All this leads to the poset to the left in Figure 7.2.Case jfx 2 Z : xC zgj = 2.Let fx 2 Z : x C zg = fa1; a2g, and M(z) = a1. By the de�nition of speialmathings, M(a2)C a1; a2. Choose 1 CM(a2) suh that 1 CM(1). It existsbeause [0̂;M(a2)℄ is a square by Proposition 7.1.5. Also [1; a2℄ is a square,and neessarily [1; a2℄ = f1;M(1);M(a2); a2g. By the fat that [M(1); z℄ isa square, we have thatM(1)Ca1. Suppose that fM(a2);M(1)g = fx 2 [0̂; z℄ :�(x) = 2g and set 2 2 fx 2 [0̂; z℄ : �(x) = 1g. Then M(2) = 0̂ and fx 2 [0̂; z℄ :�(x) = 1g = f1; 2g beause other elements would not be mathable. Hene[0̂; z℄ is dihedral. On the ontrary, if there exists y 2 fx 2 [0̂; z℄ : �(x) = 2g,y 6=M(a1);M(1), we have that yCa1; a2 beause [y; z℄ is a square. Then [0̂; a2℄is isomorphi to the poset to the right in Figure 7.2 beause [0̂; a1℄ and [0̂; a2℄must be 3-krowns by the �rst statement. �



158 Chapter 7. Kazhdan-Lusztig polynomials for arbitrary posets7.2 DiamondsIn this setion we prove the main result of this hapter. We show that theonept of speial mathing leads to an entirely poset theoreti de�nition ofR-polynomials, eR-polynomials and Kazhdan-Lusztig polynomials for a ertainlass of posets, whih we all diamonds.De�nition 7.2.1 We say that a onneted ziron D is a diamond if, for allw 2 D and for all (M;N) 2 Sw �Sw, there exists a sequene (M0;M1; : : : ;Mk)of speial mathings in Sw suh that:- M0 =M- Mk = N- for all i = 0; 1; : : : ; k � 1,jhMi;Mi+1i(x)j divides jhMi;Mi+1i(w)j (7.1)for all x 2 D, x � w.Let us do a few simple onsiderations on diamonds.1. A diamond D does not neessarily admit speial mathings of all theposet. Not only, there exist �nite diamonds D of odd ardinality, suh asthe following trivial one.
�������� �

2. A diamond does not neessarely avoid K3;2, as the following.
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7.2 Diamonds 1593. The hipothesis �onneted� in De�nition 7.2.1 is not essential but learlydoes not a�et the problem of de�ning Kazhdan-Lusztig polynomials.We now de�ne the eR-polynomials of an arbitrary diamond (throught De�ni-tion 7.2.2), and then we prove that they do not depend on the hoosen speialmathing. Maybe this is not the most elegant way, but it is ertainly the easiest,and mimis what we did for the Coxeter groups.De�nition 7.2.2 For all w 2 D, hoose a speial mathing of [0̂; w℄ and denoteit by Nw. Then, for all u;w 2 D, we indutively de�ne the eR-polynomial eRu;w(q)by the following reursive property:eRu;w(q) = ( eRNw(u);Nw(w)(q) + �(Nw(u)B u) q eRu;Nw(w)(q); if u � w,0 if u 6� w.The point is to prove that De�nition 7.2.2 is well de�ned, namely that it doesnot depend on the family fNwgw2D of speial mathings.Theorem 7.2.3 Let D be a diamond, w 2 D, and M be a speial mathing ofw. Then, eRu;w(q) = eRM(u);M(w)(q) + �(M(u)B u) q eRu;M(w)(q); (7.2)for all u � w.Proof. We proeed by indution on �(w) the statement being trivial if �(w) = 1.So assume �(w) � 2 and �x u � w. Let fNwgw2D be as in de�nition 7.2.2 and,for brevity, set N := Nw. We may learly assume that M and N satisfy (7.1).Denote by u1; u2; : : : ; u2m the elements of hM;Ni(u) indexed so that ui < ujimplies i < j. Let F be the free Z[q℄-module generated by ui, i 2 [2m℄. Wede�ne two module endomorphisms A;B : F ! F by lettingA(ui) :=M(ui) + �(M(ui)B ui) q uiand B(ui) := N(ui) + �(N(ui)B ui) q ui;for all i 2 [2m℄. We laim that� � �ABA| {z }m = � � �BAB| {z }m : (7.3)



160 Chapter 7. Kazhdan-Lusztig polynomials for arbitrary posetsIn fat, onsider the Coxeter system (G;S), where S = fs; t; rg, m(s; t) = mand m(s; r) = m(t; r) = 3 (where s := t if m = 1). Let G0 be the parabolisubgroupG0 := Gfs;tg,H :=Lx2G0 Z[q℄x and� : F ! H be the unique moduleisomomorphism suh that �(u1) = e, �(M(ui)) = s�(ui) and �(N(ui)) =t�(ui) for all i 2 [2m℄. Denote xi := �(ui), for all i 2 [2m℄. Then, by ourde�nitions, the endomorphisms �; � : H ! H de�ned by�(x) := sx+ �(sxB x) q xand �(x) := tx+ �(tx B x) q x;for all x 2 G0, satisfy � Æ A = � Æ � and � Æ B = � Æ �. Hene to prove(7.3) it is enough to show that : : : ���| {z }m = : : : ���| {z }m . For all g 2 G and allh =Pi2[2m℄ hi(q)xi 2 H we de�ne hg 2 Z[q℄ byhg := Xi2[2m℄hi(q) eRxi;g(q):Note that, if sgCg then hg = (�(h))sg by Corollary 0.5.3, and similarly if tgCgthen hg = (�(h))tg . In partiular, if sg C g and tg C g thenhg = (� � ����| {z }k (h)): : : sts| {z }k g = (: : : ���| {z }k (h)): : : tst| {z }k g;for all k � m. If k = m we dedue that(: : : ���| {z }m (h))g0 = (: : : ���| {z }m (h))g0 ; (7.4)for all h 2 H and all g0 2 G suh that sg0 B g0 and tg0 B g0.
Now �x, for the rest of the proof, i 2 [2m℄ and let : : : ���| {z }m (xi) =Pj Pj(q)xjand : : : ���| {z }m (xi) =Pj Qj(q)xj . If we let Sj(q) := Pj(q)�Qj(q) for all j 2 [2m℄,(7.3) will be proved if we show that Sj(q) = 0 for all j 2 [2m℄. We prove this



7.2 Diamonds 161by indution on j. Equation (7.4), for h = xi, implies thatXj2[2m℄Sj(q) eRxj ;g0(q) = 0 (7.5)for all g0 2 G suh that sg0Bg0 and tg0Bg0. If we set g0 = r in (7.5) we obtainS1(q) eRe;r(q) = 0;foring S1(q) = 0. Now let j > 1 and suppose that Sk(q) = 0 for k < j. If weset g0 = rxj (note that s(rxj )B rxj and t(rxj)B rxj sine r does not ommuteneither with s nor with t) in (7.5) we have thatSj(q) eRxj ;rxj (q) = 0;whih implies Sj(q) = 0 and the proof of (7.3) is ompleted.For f = Pi fi(q)ui 2 F and w 2 W we let fw := Pi fi(q) eRui;w(q). Notethat in this notation (7.2) an be reformulated asuw = (A(u))M(w):By alternated use of the propety de�ning N and our indution hypothesis wehave uw = (B(u))N(w) = (AB(u))MN(w) = (� � �BAB| {z }n (u))� � �NMN| {z }n (w);and similarly (A(u))M(w) = (� � �ABA| {z }n (u))� � �MNM| {z }n (w);where 2n = jhM;Ni(w)j. The thesis follows from (7.3) sine m divides n by thede�nition of diamonds and � � �MNM| {z }n (w) = � � �NMN| {z }n (w): �After De�nition 7.2.2, we an learly de�ne the R-polynomials and theKazhdan-Lusztig polynomials of a diamond by generalizing respetively (5) andTheorem 0.5.8. Hene, given a diamond D, for all u; v 2 D we let eRu;v(q) bethe unique polynomial satisfyingRu;v(q) = q l(u;v)2 eRu;v(q 12 � q� 12 ):



162 Chapter 7. Kazhdan-Lusztig polynomials for arbitrary posetsThe Kazhdan-Lusztig polynomials of a diamond are de�ned through the follow-ing theorem-de�nition.Theorem 7.2.4 Let D be a diamond. Then there is a unique family of poly-nomials fPu;v(q)gu;v2D � Z[q℄ satisfying the following onditions:1. Pu;v(q) = 0 if u 6� v;2. Pu;u(q) = 1;3. deg(Pu;v(q)) � 12 (�(v)� �(u)� 1), if u < v;4. if u � v, then q�(v)��(u) Pu;v �1q� = Xu�z�vRu;z(q)Pz;v(q) :Proof. Straightforward by the restrition on deg(Pu;v(q)). �The following result proves what one ertainly wishes to be true.Theorem 7.2.5 All Coxeter groups partially ordered by Bruhat order are dia-monds.Proof. Let (W;S) be a Coxeter system and let M and N be two speialmathing of an element w 2 W . Suppose �rst that [e; w℄ is not dihedral. If Mand N are both of type � or �, then (M;N) satis�es (7.1). Suppose thatM is oftype �, -multipliation for a ertain s 2 S-, N is of type �, and ss2s3 � � � sr is aredued expression of w. Call �r the speial mathing given by the multipliationto the right for sr. Then (M;�r; N) sati�es (7.1). If M and N are not bothmultipliation mathings, then the assertion follows by Theorem 4.4.7.Now suppose that [e; w℄ is a dihedral interval of length n. The set Sw of thespeial mathings of w is in bijetion with the set of all n-sequenes with entriesin fl; rg, ending with r. In fat, for all i = 1; : : : ; n�1, �x fv 2 [e; w℄ : l(v) = ig =fvi;l; vi;rg and send a speial mathingM to the sequene (xn�1; xn�2; : : : ; x1; r)where xi = l ifM(vi;l)Bvi;l, xi = r ifM(vi;r)Bvi;r . In Figure 7.3, the sequeneassoiated to the dotted speial mathing is (l; r; r; l; l; r).Any two suh sequenes give rise to a omposition of n, just by looking atthe positions where they oinide. For example, the sequenes (l; l; r; r; r; l; r; l; r)and (r; l; l; l; r; l; l; l; r) give rise to the omposition (2; 3; 1; 2; 1) of 9 sine they
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Figure 7.3: dihedral of length 6have same entries in positions 2, 5, 6, 8, and learly 9. Two speial mathingssatisfy (7.1) if all the terms in the omposition assoiated to them divide the�rst term. Let us show that there exists a hain of sequenes suh that- any two onseutively sequenes satisfy this property;- it starts with x = (xn�1; : : : ; x1; r) = (r; r; : : : ; r);- it ends with y = (yn�1; : : : ; y1; r) = (r; : : : ; r; l; r; : : : ; r); for all possible posi-tions of the unique l.Then the assertion will follow by transitivity and by the symmetry of the prob-lem. If l = yn�1, then the omposition assoiated is (2; 1; : : : ; 1) and we anhoose the trivial hain of the two sequenes. If l = yi 6= yn�1, then we anonsider the sequene z = (l; r; r; : : : ; r) and hene the hain (x; z; y), whih hasthe required properties. �The new de�nitions of eR-polinomials, R-polynomials and Kazhdan-Lusztigpolynomials are obviously onsistent. In partiular, given d in a diamond D,eR0̂;d(q) = q�(d) (7.6)



164 Chapter 7. Kazhdan-Lusztig polynomials for arbitrary posetsif [0̂; d℄ is a Boolean algebra. Moreover, given u; v in a diamond D, u � v, it isstraightforward by Theorem 7.2.3 thateRu;v(q) = ( q; if �(v) � �(u) = 1;q2; if �(v) � �(u) = 2:We say that a poset is n-gon-avoiding if it does not ontain a dihedralinterval of length n2 . We say that a poset is lower n-gon-avoiding if it does notontain a dihedral interval of length n2 ontaining a minimal element.Theorem 7.2.6 Let Z be a onneted ziron whih is both lower 8-gon-avoidingand K3;2-avoiding. Suppose that for all w 2 Z, �(w) � 2, and for all M 2 Swthere exists a speial mathing M 0 2 Sw suh that M(w) 6= M 0(w). Then Z isa diamond.Proof. Note �rst that Corollary 4.1.3, Proposition 4.2.3 and then Lemma 4.2.5hold under these hypotheses.We have to prove that for all w 2 Z and for all (M;N) 2 Sw�Sw there exists asequene of speial mathings in Sw satisfying the properties of De�nition 7.2.1.We proeed by indution on � := �(w), the result being lear if � = 1.So, assume � � 2. Firstly, we prove that, if M(w) 6= N(w), the sequene(M;N) satis�es (7.1), i.e. jhM;Ni(x)j divides jhM;Ni(w)j for all x � w. So set2n := jhM;Ni(w)j, where n � 2. Let u � w and 2m := jhM;Ni(u)j. We haveto prove that m divides n so we may assume m � 2. By applying Lemma 4.2.5to hM;Ni(w) and hM;Ni(u) we obtain that there exist a lower dihedral intervalontaining an orbit of ardinality n and a lower dihedral interval ontaining anorbit of ardinality m. Hene fm;ng � f2; 3g sine Z is lower 8-gon-avoiding.IfM(0̂) 6= N(0̂) then, by Lemma 4.2.5, the two dihedral intervals are oinident,whih fores m = n.If M(0̂) = N(0̂) then the two dihedral intervals are not neessarily oinident,but learly there remains plae only for orbits of ardinality 4. Henem = n = 2.Now suppose that M(w) = N(w). By our hypotheses, there exists a speialmathing M 0 2 Sw suh that M(w) 6= M 0(w). Then by what we have alreadyproved, (M;M 0; N) satis�es (7.1). �Note that not all zirons are diamonds. For example, the two zirons inFigure 7.2 are not diamonds. Let us onsider the poset on the right, the on-sideration about the left one being entirely similar.
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Figure 7.4: ziron but not diamondLet M be the dashed speial mathing and N be the dotted speial mathing.Then the pair (M;N) 2 Sw�Sw does not satisfy the property of De�nition 7.2.1.The reader an easily hek this by noting that jSwj = 6, a speial mathingF 2 Sw being uniquely determinated by F (a1) and F (a2), with 2 �3 possibilities.Another prove of that an be obtained, for example, by showing thateRM();M(w)(q) + �(M()B ) q eR;M(w)(q)is not equal to eRN();N(w)(q) + �(N()B ) q eR;N(w)(q):Now, eRM();M(w)(q) + �(M() B ) q eR;M(w)(q) = eR0̂;a1 = q3 by (7.6) sine[0̂; a1℄ is a 3-krown, namely a Boolean algebra of length 3.On the ontrary, by (7.6), eRN();N(w)(q)+�(N()B) q eR;N(w)(q) = eRb3;a1(q)+�(N()B ) q eR;a1(q) = q + q3.
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