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Introduction

Kazhdan-Lusztig theory lies in the intersection of different research areas of
modern mathematics such as representation theory, algebraic geometry, Verma
module theory, and combinatorics. In this thesis we tackle the subject from a
combinatorial point of view, stressing its links with the combinatorics of words,
the theory of posets, and the theory of matchings of posets.

Kazhdan-Lusztig theory originated in the paper [40] by D. Kazhdan and G.
Lusztig of 1979. In this seminal paper, the authors introduced a new family of
representations of the Hecke algebra, which is a sort of deformation of the group
algebra of the Coxeter group. The Hecke algebra and its representations relate to
two families of polynomials with integer coefficients, indexed by pairs of elements
in the Coxeter group, now commonly referred to as the family { Ry, ,(q) }uvew of
R-polynomials and the family {P, ,(¢)}uvew of Kazhdan-Lusztig polynomials.
These two families are strictly connected together (and are actually in some
sense equivalent), and are related to the Bruhat order of the underlying Coxeter
group.

After [40], which has become a turning point in Coxeter group theory, a
large number of mathematicians started studying these subjects and their re-
lated topics. Kazhdan-Lusztig polynomials have been proven to have several
applications in different contexts. We do not want here to make a list of these
applications and we refer the interested reader to [3], [29], [36], [40], [41]. We
just want to briefly recall the two following connections with Hecke algebras
and Schubert varieties, which are of concern to us. The Kazhdan-Lusztig rep-
resentations of the Hecke algebra introduced in [40] are based on certain graphs
(called W-graphs in [40]). The main ingredients for the construction of certain
W-graphs are the top coefficients of the Kazhdan-Lusztig polynomials of the
group. This is the main reason why the function p is important. As to the
role of Kazhdan-Lusztig polynomials in the geometry of Schubert varieties, it is



6 Introduction

known that, for Weyl and affine Weyl groups, their coefficients are a measure of
the singularities of the corresponding Schubert varieties. They actually count
the dimensions of the local intersection homology spaces of these varieties at a
point lying in a given Schubert cell.

Once these applications of Kazhdan-Lusztig polynomials had been found,
there followed the problem of computing them. The main tools are fairly com-
plicated recursive formulae already appearing in [40]. In the past twenty years,
many mathematicians have tried to deduce non recursive closed formulae, at
least for small classes of elements in particular Coxeter groups (mainly in the
symmetric group). For explicit descriptions of some families of Kazhdan-Lusztig
polynomials we refer to the works of Billey and Warrington [4], Brenti and
Simion [19], Boe [8], Lascoux and Schiitzenberger [45], Shapiro, Shapiro and
Vainshtein [53].

The recurrence satisfied by the Kazhdan-Lusztig polynomial P, ,(q) depends
on the descents of u and v, on the Kazhdan-Lusztig polynomials P, ,(g) for all
x,y in the interval [u,v], and on [u, v] as a partially order set under the Bruhat
order. One of the most famous conjectures of Kazhdan-Lusztig theory is due
to Lusztig and states that the Kazhdan-Lusztig polynomial P, ,(q) actually
depends only on the isomorphism type of the interval [u,v] as a poset. As
customary, we refer to this conjecture as the conjecture of the combinatorial
invariance of Kazhdan-Lusztig polynomials. In a very recent paper [17], Brenti
has proved the combinatorial invariance of Kazhdan-Lusztig polynomials in the
case of the symmetric group &(n) for lower Bruhat intervals. More precisely, he
has proved that the Kazhdan-Lusztig polynomial indexed by the permutations
u and v actually depends only on the isomorphism type of the interval [e,v],

where e is the identity element of &G(n).

This thesis contains most of the results I have obtained in Kazhdan-Lusztig
theory under the accurate and always encouraging direction of Prof. F. Brenti.
It is divided into two distinct parts.

The first part, comprising Chapters 1-3, is the result of the work I have done
after having proved a conjectures by Brenti regarding certain explicit formulae
for R-polynomials of the symmetric group. I realized that this proof works in
a more general setting and the Boolean elements naturally came out (for the
definition, see Section 1.1). Hence I tried to develop the theory for this class

of elements with particular regard to explicit closed formulae. In particular,



here I compute the R-polynomials of any Coxeter group, the Kazhdan-Lusztig
polynomials of a linear Coxeter group (see Section 0.4 for the definition), and
the parabolic Kazhdan-Lusztig and R-polynomials of the symmetric group. All
this formulae are easily stated in terms of certain tableaux associated to pairs
of Boolean elements.

These formulae, moreover, turn out to have several consequences. They allow us
to explicitly list all the pairs (u,v) of Boolean elements with u(u,v) # 0, to com-
pute and factorize the Kazhdan-Lusztig elements indexed by Boolean elements,
to compute and factorize the intersection homology Poincaré polynomials in-
dexed by Boolean elements, to prove Lusztig’s conjecture of the combinatorial
invariance for Boolean elements. In all these results, (W, S) can be any linear
Coxeter system except in the last one, where (W, S) is supposed to be strictly

linear.

The second part, comprising Chapters 5-7, is the result of a pleasant and
fruitful collaboration with Francesco Brenti and Fabrizio Caselli, which is still
ongoing. This cooperation started while trying to give a solution to Lusztig’s
conjecture on the combinatorial invariance of Kazhdan-Lusztig polynomials.
The main result of Part IT is certainly the following, which prove Lusztig’s

conjecture for lower Bruhat intervals in any Coxeter system.

Theorem. Let (W, S) and (W', S’) be two Coxeter systems, w € W, w' € W',
and let e and e’ be the identities of W and W', respectively. Suppose that
¢: [e,w] — [¢/,w'] is an isomorphism of partially ordered sets (under the Bruhat
order). Then, for all u,v € W, u,v < w, the Kazhdan-Lusztig polynomial P, ,
is equal to the Kazhdan-Lusztig polynomial Py(y) 4(v)-

The proof of this theorem uses the fundamental concept of special matchings of
a partially ordered set, which are, by definition, combinatorial invariant. The
crucial point is to prove that any special matching of [e, v] leads to a poset theo-
retical way for computing the Kazhdan-Lusztig polynomials P, , for all elements
u < v. This result has many consequences. In particular we show several com-
binatorial formulae for both R-polynomials and Kazhdan-Lusztig polynomials
which depend on classical combinatorial objects such as sub-sequences, paths
in a label graph, compositions and lattice paths. This is done by introducing
three families of sequences of special matchings which are all new combinatorial
analogues of the concept of reduced expression.
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The following is the plan of this thesis.

Part T is organized around the class of Boolean elements.
In Chapter 1 we introduce the Boolean elements and we give the preliminary
lemmas that make the combinatorics of these elements easier.
In Chapter 2, we study the Kazhdan-Lusztig and R-polynomials indexed by
Boolean elements. In particular, in Section 1 and in Section 2, we give closed
product formulae for the R-polynomials of any Coxeter group and for the
Kazhdan-Lusztig polynomials of any linear Coxeter group. As a consequence of
these formulae, in Section 3 we prove Lusztig’s conjecture of the combinatorial
invariance for Boolean elements in strictly linear Coxeter systems. In Section 4,
we explicitly list all the pairs (u,v) of Boolean elements with p(u,v) # 0. This
result can be useful also for the computation of other classes of Kazhdan-Lusztig
polynomials since the function pu is often the main obstacle in their recursive
computation (see, for example, [23, 24]). In Section 5 and in Section 6 we
compute and factorize respectively the Kazhdan-Lusztig elements and the in-
tersection homology Poincaré polynomials indexed by Boolean elements.
In Chapter 3, we compute the parabolic analogues of the Kazhdan-Lusztig and
R-polynomials for the symmetric group in the case when the indexing permuta-
tions are Boolean. These formulae are valid with no restrictions on the parabolic
subgroup W; and depend on the number of occurrences of certain sub-tableaux
in a fixed tableau associated to the indexing permutations.

Part II is organized around the applications of the concept of special match-
ing in Kazhdan-Lusztig theory.
Chapter 4 is devoted to the proof of Lusztig’s conjecture on the combinatorial
invariance of Kazhdan-Lusztig polynomials for lower intervals, that is for in-
tervals of the form [e,v] for any element v in any Coxeter group. We start by
giving some combinatorial properties of Bruhat order in Section 1 and by ex-
amining the combinatorics of pairs of special matchings in Section 2. After this,
we tackle the problem of the combinatorial invariance. First, in Section 3, we
prove the conjecture for lower Bruhat intervals in Coxeter groups of rank 3 and
then from this, in Section 4, we deduce the result for all Coxeter groups. This
follows by proving that special matchings lead to a poset theoretic recursion
for computing R-polynomials (Corollary 4.4.8). Finally, in Section 5, for each
v € W, we introduce and study a combinatorial version of the Hecke algebra
naturally associated to the special matchings of [e,v] and an action of it on the
submodule of the classical Hecke algebra of W spanned by {7, : v < v}. This



action enables us to reformulate Corollary 4.4.8 in a very compact way by saying
that this action “respects” the canonical involutions ¢ of these Hecke algebras.
This, in turn, implies that the usual recursion for Kazhdan-Lusztig polynomials
holds also when descents are replaced by special matchings thus giving a poset
theoretic recursion for the Kazhdan-Lusztig polynomials which does not involve
the R-polynomials.

In Chapter 5, we introduce three families of sequences of special matchings: the
regular sequences, the B-regular sequences, and the R-regular sequences. All
of them are new combinatorial analogues of the concept of reduced expression.
Using these sequences, we generalize some formulae valid for Kazhdan-Lusztig
and R-polynomials of any Coxeter system. In particular, in Section 1 we gen-
eralize an algorithm and a closed formula of Deodhar ([28, Algorithm 4.11] and
[26, Theorem 1.3]) for Kazhdan-Lusztig and R-polynomials, respectively. In
Section 2 we obtain a bijection between subsequences of B-regular sequences
and certain paths in an appropriate directed graph. This bijection has several
nice properties, and transforms the concepts and statistics used in the previous
section into familiar ones on paths. In Section 3 we generalize to a combinato-
rially invariant setting what is probably the most explicit non-recursive formula
known for Kazhdan-Lusztig polynomials which holds in complete generality,
namely Theorem 7.3 of [14].

In Chapter 6, we study the set of all special matchings S, of a permutation v.
We show that the group Wv generated by the special matchings of S,, which
are involutions, is actually a Coxeter group, with S, as set of Coxeter genera-
tors. The Coxeter system (/WU, Sy) is always isomorphic to a direct product of
symmetric groups.

Finally, Chapter 7 deals with the problem of generalizing the definition of
Kazhdan-Lusztig and R-polynomials to arbitrary posets. We prove that, in
a certain class of posets, the concept of special matching leads to an entirely
poset theoretic definition of Kazhdan-Lusztig and R-polynomials. This class of
posets, which we call diamonds, includes the lower Bruhat intervals and the new
definitions are obviously consistent with the classical definitions.

Chapter 0 is not meant to be an introduction either to Coxeter group theory
or to Kazhdan-Lusztig theory. It just reviews the background material that is
being used in both Part I and Part II, and collects some already known results
for later reference. Rarely, some external references were necessary in Part II,
but we have tried to minimize reliance on other sources. We refer to [39] and [9]
for a detailed treatment of the subject.
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Chapter 0

Notation and Background

This chapter reviews the background material on posets, Coxeter systems and

Kazhdan-Lusztig theory that is needed in the rest of this work.

0.1 Notation

We collect here some notation that will be adhered to in the sequel.

Z ring of integer;
P set of positive integer;
N set of non-negative integer;
Q field of rational numbers;
C field of complex numbers;
|S] cardinality of S, for any set S;
[a, ] {neP:a<n<b}, for a,b € N;
[n] [1,n], forn e N;
R]q] ring of polynomials with coefficients in R for R=N, Z,Q, C;
[¢']P the coefficient of ¢* in P fori € N, P € R[q];
We write “:=" if we are defining the left hand side by the right hand side.

11



12 Chapter 0. Notation and Background

For a proposition P we let

1, if P is true;
P = ) )
X(P) { 0, otherwise.

If ay,...,a € Z, we write S = {a1,...,ar}< to mean that S = {a4,...,ar}
and a1 < -+ < ay.

For n € P, we denote by &(n) the group of all bijections 7 : [n] = [n]
(the symmetric group). If ¢ € &(n) then we write ¢ = oy ...0, t0 mean
that o(i) = oy, for i = 1,...,n. We will also write o in disjoint cycle form
(see, e.g., [55], p.17) and we will usually omit writing the 1-cycles of o. For
example, if ¢ = 365492187 then we also write ¢ = (9,7,1,3,5)(2,6). Given
o,7 € 6(n) we let o7 = o o 7 (composition of functions) so that, for example,
(1,2)(2,3) = (1,2,3).

0.2 Posets

A partially ordered set (P,<), or poset for short, consists of a set P together
with a partial order relation “<”. The relation is suppressed from the notation
when it is clear from context. A subset R of P has a structure of a poset with
the order relation induced by P. An element x € P is mazimal (respectively
minimal) if there is no element y € P\ {z} such that z <y (respectively y < z) .
We say that P has a bottom element 0 if there exists an element 0 € P satisfying
0<zforalzeP. Similarly, P has a top element 1 if there exists an element
leP satisfying 2 < 1forall z € P. If both 0 and 1 exist, then P is bounded.

Two elements z,y € P are said to be comparable if either z < y or y < =z,
and incomparable otherwise. We say that P is connected if there do not exist
two non-void subsets of P such that any element of the first is incomparable
with any element of the second. We also write y > z to mean z < y, x < y
to mean z < y and z # y, and y > x to mean x < y. If x < y we define
the (closed) interval [z,y] = {z € P : x < z < y} and the open interval
(z,y) ={z € P : z <z <y} If every interval of P is finite, then P is called a
locally finite poset. We say that y covers x, or x is covered by y, if © < y and
[z,y] = {z,y}, and we write z <y as well as y > z. If P has a 0 then an element
x € Pis an atom of P if 0 < 2. Similarly, if P has a 1 then an element z € P is
a coatom of P if z < 1.
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The standard way of depicting a finite poset P is to draw its Hasse diagram.
This is the graph with P as node set and having an upward-directed edge from
x to y if and only if z <y (so y is drawn “above” ). The Hasse diagram gives all

the order relations by transitivity and it is clearly minimal with this property.

A sequence C' = (zg,z1,-..,2,) of elements in P is called a chain (respec-
tively multichain) if o < z1 < ... < xp (respectively, zg < z1 < ... < xp).
We then also say that C starts with g and ends with z,. The integer h is
the length of C' and it is denoted by I(C). The length of a finite poset P is
I(P) := max{l(C) : C is a chain of P}. A chain is mazimal if its elements are
not a proper subset of those of any other chain. A chain is saturated if all

successive relations are coverings: in this case we write g <z < --- < xp.

A morphism of posets is a map ¢ : P — @ from the poset P to the poset
@ which is order-preserving , namely such that x < y in P implies ¢(z) < ¢(y)
in @, for all z,y € P. If instead z < y implies ¢(z) > ¢(y), the map is order-
reversing. Two posets P and @ are isomorphic if there exists an order-preserving
bijection ¢ : P — @ whose inverse is also order-preserving. In this case ¢ is an
isomorphism of posets. An isomorphism of posets ¢ : P — P is also called an
automorphism. If, instead, ¢ : P — P is a bijection such that ¢ and ¢! are
order-reversing, then ¢ is called an anti-automorphism. A poset P is a Boolean
algebra if there is a set S such that P is isomorphic to the set of all subsets of
S, partially ordered by inclusion.

A poset P is ranked if there exists a (rank) function p : P — N such that
p(y) = p(x) + 1 whenever z Qy. A poset P is pure of length n if all maximal
chains are of the same length n. A poset P with bottom element 0is graded if
every interval [6, z], € P, is pure. Suppose that P is either pure or graded.
Define the rank p(z) of 2 € P to be the length of the subposet {y € P : y < x}.

This gives P a structure of ranked poset.

The Mdébius function of P assigns to each ordered pair x < y an integer

u(z,y) according to the following recursion:

ifx =1y,

L,
w(r,y) = { e ulm), Hr<y. (1)

We say that a finite graded bounded poset P, with rank function p, is Fulerian
if pu(u,v) = (=1)PW=, for all u,v € P, u < v. Equivalently, P is Eulerian if
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and only if

[{p € [u,v] : p(p) is even}| = {p € [u,v] : p(p) is odd}|

for all u,v € P, u < w.

Let Int(P) := {(z,y) € P> : z < y}. Given a commutative ring R, the
incidence algebra I(P; R) of P with coefficients in R is the set of all functions
f: Int(P) - R with sum and product defined by

(f+9)(z,y) == f(z,y) + g(z,y)

and

(f9)a,y) = D fl@,2)9(zy), (2)

z<z<y

for all f,g € I(P;R) and (z,y) € Int(P). The incident algebra I(P; R) is an

associative algebra having, as identity, the function d defined by

1 ifzx=y,
5(z,y) ::{ Y

0 otherwise.

An element f € I(P;R) is invertible if and only if f(z,z) is invertible for all
x € P. If f is invertible then we denote by f ! its (two-sided) inverse.

0.3 Coxeter systems

Let S = {s1,...,5.} be a finite set of cardinality r. A Cozeter matriz is a

matrix m : S x S — {1,2,...,00} such that
L. m(siasj) :m(sjasi);
2. m(sy,85) =1 < i=j.

for all i,j € [r].
Any Coxeter matrix uniquely determines a group W given by the presentation:

- generators: S;
- relations: (s;s;)™(*"%) for all i,j € [r] with m(s;,s;) # oo.

If a group W has such a presentation, then W is a Coxeter group, the pair
(W, S) is a Cozeter system, and S is a set of Cozeter generators. The cardinality
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|S| = of S is usually called the rank of W. Given two Coxeter systems (W, S)
and (W', S"), amap ® : W — W' is an isomorphism of Coxeter systems if it is
an isomorphism of groups and ®(S) = S’. The isomorphism type of a Coxeter
system (W, S) is not determined by the isomorphism type of the group W alone.
Nevertheless, it is very common to talk about Coxeter groups while having in

mind Coxeter systems.

The Coxeter matrix m of a Coxeter system (W, S) is encoded in its Cozeter
graph. This is the labeled graph obtained in the following way: take S =
{s1,...,8:} as the set of vertices, then join a pair of vertices {s;, s;} by an edge
if and only if m(s;,s;) > 3 and label such an edge by m(s;, s;) (labels equal to
3 are usually omitted).

By property 2 of the definition of Coxeter matrix, all generators are involutions.
Hence any element w € W can be written as a product of generators (without
using inverses)

w =83 S, Si; €.

If ¢ is minimal among all such expression of w, then ¢ is the length of w and it
is denoted by I(w). Any expression of w which is a product of [(w) elements of
S is called a reduced expression of w. There is only one element of length zero,
the identity, which we denote by e.

For all u,v € W, we let

Dr(u) = {seS: Il(su)<li(u)},
Dr(u) = {seS: I(us) <l(u)},
TW) = {wsw':s€SweW}, (the set of reflections of W ).

The elements of S are also called simple reflections. We write only T instead of

T (W) when no confusion arises.

The proof of the following fundamental result can be found in [39] §5.8.

Theorem 0.3.1 (Exchange Property) Let w € W, s1,82,...,8, € S, w =
$182...8, where this expression is reduced. Let t € T(W') be such that l(wt) <
I(w). Then there exists a unique i € [r] such that wt = s1S2...8; ..., (where
5; means that s; has been omitted). In particular, if t € S, this i € [r] is such

that s;41Si+2 - .. Sps is reduced while s;s;41 . ..5pS is not.
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For the reader’s convenience, we just record the following easy consequence of

the Exchange Property.

Proposition 0.3.2 Given a Cozeter system (W,S), let w € W. If s € Dy (u),
then there exists a reduced expression si---s,. of u such that sy = s. Dually, if

s € Dg(u), then there exists a reduced expression si -+ s, of u such that s, = s.

We will always assume that W is partially ordered by (strong) Bruhat order
(denoted by <), that we define through the following Theorem-Definition. By
a subword of a word s;s - - - s, we mean a word of the form s;, s;, - - - 5;,, where
1<ii<la< - <ip <.

Theorem 0.3.3 Let u,v € W. Then the following are equivalent:
1. uw < w in the Bruhat order;

2. there exist ty,...,t. € T(W) such that t,...tqyu = v and l(t;...t1u) >
l(ti_l ...tlu) fOT‘iZ 1,...,7“;

3. there exist t1,...,t, € T(W) such that uty...t, = v and l(uty...t;) >
l(ut1 ---ti—l) fOTi = 1,...,7“;

4. for any reduced expression of v there exists a reduced expression of u which

is a subword of it;

5. for every reduced expression of v there exists a reduced expression of u

which is a subword of it.

The Bruhat order gives W the structure of a graded poset, with length as rank
function. If u < v we let l(u,v) := I(v) — l(u). As for every ranked poset, we
write u < v if w <ov and I(u,v) = 1. Given u,v € W we let [u,v]w :={z € W :
u <z < w} and we write [u,v] when no confusion arises. We consider [u, v] as
a poset with the partial ordering induced by W. It is well known (see, e.g., [6],
Corollary 1) that intervals of W (and their duals) are Eulerian posets. Hence,
in particular, if [(u,v) < 2 then all intervals [u, v] have cardinality equal to 4.
The Bruhat graph of W is the following directed graph. Take W as vertex
set. For u,v € W, put an arrow v — v from u to v if and only if [(u) < I(v) and
ut = v (equivalently tu = v) for some reflection ¢. Clearly u < v if and only if

there exists a chain v — u; — us — --- = up = v.

The following Lemma is usually referred to as the Lifting Lemma (see [39],

Lemma 7.4 for a proof).
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Lemma 0.3.4 (Lifting Lemma) Let s € S and u,v € W, u < v. Then
1. if s € Dr(v) and s € Dr(u) then us < vs;
2. if s ¢ Dr(v) and s ¢ Dg(u) then us < wvs;

3. if s € Dr(v) and s ¢ Dg(u) then us < v and u < vs.

We now recall some results due to J. Tits [60]. Given s,t € S such that
m(s,t) < oo, let asy = stst. .., with exactly m(s,t) letters.
m(s,t)
Lemma 0.3.5 Let w € W and s,t € Dr(w). Then there ezists a reduced

expression of w which starts with o+, that is
_ i
v =5V,

with [(v) = m(s,t) +1(v").
Dually, if s,t € Dg(w), then there exists a reduced expression of w which ends

with o ;.

Two expressions are said to be linked by a braid move (respectively a nil move)
if it is possible to obtain the first from the second by changing a factor a;,; to

a factor oy s (respectively by deleting a factor ss).
Theorem 0.3.6 (Tits’ Word Theorem) Let u € W. Then:

1. any two reduced expressions of u are linked by a finite sequence of braid

moves;

2. any expression of u (not necessarily reduced) is linked to any reduced ex-

pression of u by a finite sequence of braid and nil moves.

Let J C S. The subgroup of W generated by the set .J is called the parabolic
subgroup generated by J, and it is denoted by W;. The pair (W, J) itself is
a Coxeter system with the relations induced by (W, S). We denote by W7 the

set of minimal length representatives for the right cosets:

W' ={weW:Dp(w) CS\J}
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We have the following decomposition.

Theorem 0.3.7 Multiplication gives a bijection Wy x W7 — W. That is, for
all w € W, there exist unique wy € Wy and w’ € W7 such that

w=wsw’.
Furthermore, these elements satisfy

l(w) = 1(wy) + l(w?).

Note that W? = W. If W is finite then we denote by wy its longest element.

Given u,v € W7, we let
[u,v]; ={z €W’ : u<z<vl,
and consider W7 and [u,v]; as posets with the partial ordering induced by W.

We refer the reader to [9] or to [39] for a more detailed treatment of the

argument.

0.4 Symmetric groups and linear Coxeter groups

The most important Coxeter group is certainly the symmetric group &(n), that
is the group of all permutations of the set [n].
Consider a set S of cardinality n — 1, say S = {s1,82,...,8,—1}, and consider

the Coxeter matrix m given by:

1, ifli—j|=0,
m(si,s]-): 3: if |Z_.7|:]-7
9, if|i—j| > 1,

for all i,j € [n—1]. Call W the Coxeter group associated to the Coxeter matrix
m. We obtain a group isomorphism from W to &(n) identifying s; with the
transposition (¢,4 + 1) for all ¢ € [n], and extending multiplicatively. This is not
the unique isomorphism and, as usual, we abuse notation by referring to the
Coxeter system (W, S) simply by &(n). In the sequel, we write both s; and ¢
for the transposition (7,7 + 1).

The Coxeter system (&(n), S) has rank n — 1 and its Coxeter graph is
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S1 S9 Sn

Many of the concepts we have given in general Coxeter group theory can be
reformulated in a simpler form for the symmetric group &(n). In particular,
we will need the following useful characterization of the Bruhat order (see, e.g.,
[47], Chap.1, for a proof). For o € &(n), and i € [n], we let

{ot, ..., o" = {o(1),...,0(i)}.

Theorem 0.4.1 Let 0,7 € &(n). Then o < 7 if and only if o™/ < 753 for all
1<j<i<n-—1.
As in [49], we call an irreducible Coxeter system linear if it has Coxeter

graph with no branch points, that is if it is isomorphic, for a certain n, to a
Coxeter system (W, S = {s1,...,sp}) with:

m(s;,s5) =2, ifl<|i—jl<n-—1L

(strictly linear if also m(s1,s,) = 2, non-strictly otherwise). These are the
Coxeter graphs associated respectively to a strictly and to a non-strictly linear

Coxeter system:

Mp_1,n

S1 52 Sn

where there is no restriction on the labels m; ; := m(s;,s;). This class not only
includes the symmetric groups, but also many of the classical Coxeter groups



20 Chapter 0. Notation and Background

such as those of type B, F, H, C, I(m) (which are strictly linear) and those
of type A (which are non-strictly linear). See [39] for a complete description of

classical Coxeter groups.

0.5 Kazhdan-Lusztig theory

In this section we introduce the basic elements of Kazhdan-Lusztig theory. All
definitions and results appearing here are due to Kazhdan and Lusztig and their
proofs can be found in [40] or [39, Chapter 7].

Kazhdan-Lusztig polynomials were originally introduced in terms of the
Hecke algebra ([40]). Let (W, S) be any Coxeter system. The Hecke Algebra
H of W over the ring of Laurent polynomials Z[qi1 , q’%] is the free Z[q%,q*%]—
module

H = 69 Z[q%,q_%]Tw
weWwW

with basis {T}, : w € W} and multiplication defined by:
TSUJ} .f ‘D )
T,Ty, = 1 ’ ¢ L(U) (3)
(q_l)Tw+quwa if s € DL(U)a

for allw € W and s € S. Every element T, of the canonical basis of # is invert-
ible; as I(w) increases, however, the expression of the inverse gets more and more
complicated and this is the reason why the family {R,, ,(¢)} of R-polynomials
was defined, essentially as its coordinates with respect to the canonical basis of
H. More precisely, we have the following result.

Proposition 0.5.1 There exists a unique family {Ry v (q)}u,wew C Z[q] of

polynomials satisfying

(wal)_l = (_1)l(w)q—l(w) Z(_l)l(u)Ru,w(Q)Tm

u<w
for allw e W.

The polynomials R, , which have been defined by the previous proposition are
called the R-polynomials of W. It is easy to see that deg(R,,) = I(u,v) if
u < w, and that R, ,(¢) = 1if u = v, for all u,v € W. It is customary to let
Ry () := 0if u £ v. We then have the following result that follows from (3)
and Proposition 0.5.1 (see [39, §7.5]).
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Theorem 0.5.2 Let u,v € W and s € Dr(v). Then

(4)

R (q) _ Rsu,sv ((1), ZfS € DL (U),
GRsus0(0) + (@ = ) Ruso, if s & Dr(u).

Note that the preceding theorem can be used to inductively compute the R-

polynomials since [(vs) < I(v). There is also a right version of Theorem 0.5.2.
It is sometimes convenient to use a related family of polynomials with non-

negative integer coefficients, called the ﬁ—polynomials. For u,v € W we let

Ry, »(q) be the unique polynomial such that

l(u,v) ~ 1 _1
Run(q) =q = Ruou(q® —q72). (5)
It is not difficult to verify that this condition determines a monic polynomial

Ru.(q) € N[g] of degree I(u,v), satisfying the following recurrence relation,
which is a consequence of Theorem 0.5.2.

Corollary 0.5.3 Let u,v € W. Then Ry,(q) =0 if u £ v and Ry, (q) = 1 if
u=v. Ifu<wvands € Dg(v) then

Ruw(q) = Rsu,s0(q) + x(5u > u) q Ry s0(q)-

Now we introduce a fundamental involution on H. Define 1(¢2) = ¢~ 2 and
1(Ty) = (T,,-1)~! and combine these assignments to obtain a ring automor-
phism ¢ : H — H, which is clearly an involution. Now we look for a special
basis of H, again indexed by W, consisting of elements fixed by . One may

easily check that the elements

c' .= qf%(Ts +Te)

s
are fixed by ¢. These are the first elements of the basis we are looking for.

Theorem 0.5.4 There exists a unique basis C'= {C}, : w € W} of H such
that:

L u(Cl) = Cl;
1(w)

2. C{u =q Zugw me(q)Tu;

3. Py € Z[q) has degree at most (I(u,w) — 1) if u < w, and Py, = 1.



22 Chapter 0. Notation and Background

The elements of the basis C' are currently called Kazhdan-Lusztig elements
and are usually denoted this way following the notation of [40], where they
were first introduced. The polynomials {Py ,(q) }uvew C Z[g] (where, for no-
tational convenience, it is usual to set P, ,(¢) := 0 if u £ v) are the well
known Kazhdan-Lusztig polynomials, or P-polynomials. As the coefficient of
q%(l(“”’)_l) in P, ,(¢) plays a very important role, we denote it, as customary,
by u(u,v) and we write v < v if p(u,v) # 0.

The proof of the existence of the Kazhdan-Lusztig elements can be obtained
by showing the recursive property they satisfy. This recurrence leads to the
following multiplication.

Proposition 0.5.5 Let s € S. Then

OSU/ + ZSGDL(Z) ,U«(Z,’IU)CZ, ZfS ¢ DL(U)),

for allw € W.

Hence, given w € W, we have

for all s € D (w).

Both R-polynomials (and hence R-polynomials) and Kazhdan-Lusztig poly-
nomials could be equivalently introduced in a purely combinatorial way through

the following results.

Theorem 0.5.6 Let (W, S) be a Coxeter system. Then there is a unique family
of polynomials { Ry (q) }uvew C Z[q] satisfying the following conditions:

1. Ruy(q) =0ifu L v;
2. Ryu(q) =1;

3. if s € Dr(v) then

R (q) _ { Rsu,sv ((1), ZfS € DL(U)’
v quu,sv (q) + (q - ]-)Ru,sv (q), lfS € DL(U)-
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Theorem 0.5.7 Let (W, S) be a Cozxeter system. Then there is a unique family
of polynomials {ﬁuﬂ,(q)}uﬂ,ew C Z|q] satisfying the following conditions:

1. ﬁum(Q) =0 ifu i vy
2. Ru.u(q) =1;

3. if s € Dr(v) then

Ru,v (Q) = Rsu,sv (Q) + X(Su > U) q Ru7sv (Q)

Theorem 0.5.8 Let (W, S) be a Cozxeter system. Then there is a unique family
of polynomials { Py, ,(q) }u,vew C Z[q] satisfying the following conditions:

1. Puy(q) =0 if u £ v;

2. Puu(q) =1;

3. deg(Pu(0) < L (uy0) = 1), if u < v;

4. if u <w, then

1
ql(u,v) Pu,v <a> = Z Ru,z (q) Pz7v(q) :

u<z<v

The recursive relation for computing the Kazhdan-Lusztig polynomials is given

in the following results.

Theorem 0.5.9 Let (W,S) be a Cozeter system, u,v € W, u < v, and s €
Dy (v). Then

- Uzv)
Puu(9) = ¢ Pou,so() + 4° Puyso(a) — Z q > p(z,sv)Pu,:(q),
2:8€Dr,(2)

where ¢ = x(su < u).

Corollary 0.5.10 Let (W,S) be a Cozeter system, u,v € W, u < v, and s €
Dr(v). Then Py4(q) = Psuw(q).

Proposition 0.5.5 and Theorems 0.5.6, 0.5.7, 0.5.9 and 0.5.10 can also be refor-

mulated in right versions.
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In order to find a method for the computation of the dimensions of the
intersection cohomology modules corresponding to Schubert varieties in G/ P,
where P is a parabolic subgroup of the Kac-Moody group G, Deodhar ([27])
defined two parabolic analogues of Kazhdan-Lusztig and R-polynomials, which
correspond to the roots of the equation 2 = ¢ + (¢ — 1)x. These polynomials
are related to their ordinary counterparts in several ways; in particular, the
parabolic Kazhdan-Lusztig polynomials of type —1 are the ordinary ones in the
way of Proposition 0.5.13. But they also have direct application in different
context. For example, they have connections to the theories of tilting modules
([54]), quantized Schur algebras ([61]) and Lie algebras (in [46], Leclerc and Thi-
bon show that the Littlewood-Richardson coefficients are values at 1 of certain
parabolic Kazhdan-Lusztig polynomials of type ¢). Despite this, there are very
few explicit formulae for them.

We refer to [27, §§2-3] for the proofs of the two following result.

Theorem 0.5.11 Let (W, S) be a Cozeter system, and J C S. Then, for each
x € {—1,q}, there is a unique family of polynomials {R;%(q)}yvews C Z[q]
such that, for all u,v € W:

1. Ry(q) =0 ifu £ v;

2. Ryi(a) =1;

3. ifu <v and s € Dr(v), then

Riﬁvs(Q)a ifS € DR(U),
R;% (@) =4 (a- 1)R1{:£s(q) + qR,{g’fvs(q), if s ¢ Dp(u) and us € W7,
(¢ —1-=2)R)7(q), if s ¢ Dp(u) and us ¢ W.

Theorem 0.5.12 Let (W, S) be a Cozeter system, and J C S. Then, for each
x € {—1,q}, there is a unique family of polynomials {Pi’f(Q)}umeWJ C Zlq],
such that, for all u,v € W7 :

1. Pli(q) =0 if u £ v;
2. PlI(q) =1;

3. deg(P(q) < 5 (I(u,v) — 1), if u <w;
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4. if u <w, then

feori ()= Y R0 PEG.
q z€[u,v] s

The polynomials R;%(q) and P;7(¢q) of Theorems 0.5.11 and 0.5.12 are
called the parabolic R-polynomials and parabolic Kazhdan-Lusztig polynomials
of W of type a. By definition, R () (= R%4(q)) and PY5(q) (= P2¢(q)
are the ordinary R-polynomials and Kazhdan-Lusztig polynomials of W.

Parabolic Kazhdan-Lusztig and R-polynomials are related to their ordi-
nary counterparts also in the following way (see [27, Propositions 2.12 and
Remark 3.8] for a proof).

Proposition 0.5.13 Let (W, S) be a Coxeter system, J C S, and u,v € W,

Then we have

Ri:f)(q) = Z (_m)l(w)Rwuﬂ)(q)a
weWy

for all z € {—1,q}, and

Plig) = Y (=)™ Pyuu(q)

weWy

(in particular, p(u,v) is also the coefficient of qz(1(wv)=1 ip Png(q))
Moreover, if Wy is finite then

PJ7;1(Q) = ow{u,wf{v(Q)'

The Kazhdan-Lusztig polynomials of type ¢ have the following recursive

formula (see [27, Proposition 3.10]), that will be used in the sequel.

Theorem 0.5.14 Let (W,S) be a Coxeter system, J C S, and u,v € WY,
u < wv. Then for each s € Dgr(v) we have

Pli(q) =P - > 1w, vs)g =M Pl (q)
wE[u,vs]y: sSEDR(w)

where
Pl (q) +qPli(q), if us <u,

us,vs u,US

P =< qPht () + Pli(q), ifu<useW?,

us,vs u,US

0, ifu<us¢ W,
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Remark. It is easy to prove by induction on I(v) that if us ¢ W~ then any
P,fg}(q) in the sum of Theorem 0.5.14 is 0, and consequently the parabolic
Kazhdan-Lusztig polynomial PUJ:g (¢) is 0. Recall that, if u < v, the ordinary

Kazhdan-Lusztig polynomial P, ,(q) is always non-zero.

Corollary 0.5.15 Let (W,S) be a Coxeter system, J C S, and u,v € W7,
u < wv. Then, for each s € Dgr(v), we have

Pl (q) = P, (q).

us,v

In particular, if s € Dr(v) \ Dr(u), then u(u,v) = 0.

We refer to [9, 39] and [40, 27] for more details concerning general Coxeter

group theory, and ordinary and parabolic Kazhdan-Lusztig polynomials.

0.6 Combinatorial invariance conjecture

One of the most famous conjecture in Kazhdan-Lusztig theory is certainly
Lusztig’s conjecture on the combinatorial invariance of Kazhdan-Lusztig poly-
nomials. This long standing conjecture states that the Kazhdan-Lusztig poly-
nomial P, ,(g) depends only on the isomorphism type of the interval [u,v] as a

poset.

Conjecture 0.6.1 (Lusztig) Let (W,S) and (W', S") be two Cozeter systems,
u,v € W and u',v' € W. Suppose that ®: [u,v] = [u',0'] is an isomorphism of
posets (under Bruhat order). Then

Py y(0) = Pa(2),a(5) ()

for all x,y € [u,v].

As a direct consequence of Theorem 0.5.8 and of (5), Conjecture 0.6.1 can be
reformulated both in terms of R and ﬁ—polynomials.

Corollary 0.6.2 Let (W,S) and (W', S) be two Cozeter systems, u,v € W and
u',v' € W', and let
D [u,v] — [u, 0]
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be an isomorphism of posets. Then the following are equivalent:
i) Pry(q) = Pa(z)a(y)(q) for all 7,y € [u,v];
i) Rey(q) = Ra(a),a(y)(q) for all 2,y € [u,v];
iii) Rzy(q) = Reg) o) (q) for all 2,y € [u,v],

For many years there have been very few partial results to support it. This
conjecture was known to be true for [u, v] lattice (see [11]) and for [u,v] of rank
< 4. Precisely,

g (wv) if [u,v] is a lattice,
Ruw(q) = ¢ +q, if [u,v] is a 2-crown, (6)
g + B g2, if I(u,v) = 4,

where Bs(u,v) is the number of paths from u to v of length 2 in the Bruhat
graph of W. Recently in [17] Brenti proved that Conjecture 0.6.1 is true when
W and W' are symmetric groups, and v and u' are the identities of W and W'
(see Corollary 0.7.7).

In Section 2.3 we prove that Lusztig’s conjecture holds when the Coxeter
groups W and W' are linear Coxeter groups, and the elements v and v’ are
Boolean elements. All Chapter 4 is devoted to what is probably the most general
result on the combinatorial invariance. We prove that Lusztig’s conjecture is
true when u and u' are the identities of W and W' with no restrictions on the
Coxeter groups W and W’. The proof of this result is based on the concept of
special matching, to which is devoted the following section.

0.7 Special matchings

In this section we follow [17] to define the special matchings of a poset, which are
fundamental in Part II. We also collect the results of [17] that will be needed in
the sequel for future references. Special matchings had already been considered
in the literature by du Cloux ([30]) under the equivalent concept of compression
labelings.

Remind that a matching of a graph G with vertex set V' and edge set E is
an involution M : V' — V such that {M(v),v} € E for all v € V. A matching
of a graph may be visualized by coloring with the same color all edges of the
form {M (v),v}.
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Definition. Let P be a partially ordered set. We say that a matching M of
the Hasse diagram of P is a special matching of P if

u<v = M(u) < M(v),

for all u,v € P such that M (u) # v.

For example, the dotted matching of the following poset is a special matching

while the dashed one is not. For convenience, in some figures we do not draw the
line of the covering relation between v and M (v). Note that a special matching
has certain rigidity properties. For example, if u<tv and M (u)>wu, then M (v)>v
and M(u) 1 M (v).

The following result is the analogue of the Lifting Lemma (Lemma 0.3.4).

Lemma 0.7.1 (Lifting Lemma for special matchings) Let M be a special
matching of a locally finite ranked poset P, and let u,v € P, u < v. Then

1. if M(v) <v and M(u) <u then M (u) < M(v);
2. if M(v) >v and M(u) > u then M(u) < M(v);
3. if M(v) <v and M (u) > u then M (u) < v and u < M(v).

Lemma 0.7.1 is actually a generalization of the Lifting Lemma and will play an

important role in the sequel.

Now restrict our attention to the case where P is a lower Bruhat interval of
the symmetric group, namely an interval of the form [e,v], with v € &(n). In
this case we simply refer to a special matching of [e,v] as a special matching
of v. Every right or left descent of v leads to a special matching of v (this is
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actually true in any Coxeter group). In fact, let s; € Dgr(v) and define the
matching p of [e,v] by p(u) := us;, for all u € [e,v]. The classical Lifting
Lemma (Lemma 0.3.4) in particular implies that p satisfies the axioms of a
special matching. Analogously, the matching A defined by A(u) := s;u for all
u € [e,v] is a special matching whenever s; € Dy, (v).

The following is a further result on the rigidity of special matchings of per-
mutations. It states that a special matching of a permutation is completely

determined by how it acts on the atoms.

Lemma 0.7.2 Let v € &(n) and M, N be two special matchings of v such that
M(u) = N(u) for all u < v with l(u) < 1. Then

for all u € [e,v].

The next result we are going to show, is a complete characterization of the
special matchings of v € &(n). For this we firstly need some notation. For all
i € [n — 1] we denote respectively by A, p; : &(n) = &(n) the multiplications
on the left and on the right respectively by s;. In other words, \;(v) := s;v
and p;(v) := vs; for all v € &(n). Now fix i € [n — 1], and let J = [i] and
K =[i,n — 1]. Then we set

- Li(u) == uys;u,

- ri(u) = ugs; Ku,

J,

wand u = ug K

where u = uy u are the decompositions of u relative to the
parabolic subgroups &(n); and &(n)k (see Theorem 0.3.7). We also denote by

i, pi,1; and r; any restriction of these applications to a proper subset of &(n).

Theorem 0.7.3 Let v € &(n) and M be a special matching of v with M (e) =
s;. Then M s either \;, p;,l; or r;.

We say that a special matching M is of type A if M = A; for some i € [n — 1]
and we similarly define special matchings of type p, of type [ and of type r.
Note that a special special matching may have more than one type. In fact,
for example, the unique matching of the trivial interval [e, s;] has all the types.
The proof of Theorem 0.7.3 tells us also that special matchings which are not
of type A or p are quite rare. More precisely, we have the following results, that

we state here for future references.
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Corollary 0.7.4 Let v € &(n).

1. If l; is a special matching of v then
Si+18i8i—1 % V.

2. If r; is a special matching of v then
$i—18iSi41 L V.

Corollary 0.7.5 Let u,v € 6(n), u <v, J =[i] and K = [i,n — 1].

1. Let l; be a special matching of v and let u = ujus with u; € &(n)y and
us € 6(n)k. Then we have either uy = uy or uy = uys;. In particular,
in both cases,

li(u) = uys;uz.

2. Let r; be a special matching of v and let u = uyuy with u; € &(n)g and
us € &(n)y. Then we have either u; = ug or uw = ujks;. In particular,
in both cases,

li(u) = uys;uz.

Using the classification of Theorem 0.7.3, Brenti proves the following result,

which is the main theorem of [17].

Theorem 0.7.6 Let v € &(n) and M be a special matching of v. Then, for all

u<wv,

Ruo(q) = Rr(uy,m(v)(4) if M(u) < u;
w,v = )
qR 1), M(0) (@) + (@ = 1) Ry pr(0)(q),  otherwise,

and, equivalently,

Ry (@) = Rasruy m(w) (@) + X (M (1) > 1) q Ry ar(w) (0)-

Since, by definition, the set of the special matchings of v depends only on the
isomorphism type of [e,v] as a poset, Theorem 0.7.6 is a partial result towards

Lusztig conjecture on the combinatorial invariance (Conjecture 0.6.1).
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Corollary 0.7.7 Let v € &(n) and v' € &(m) be such that [e,v] = [e,v'] as

posets. Then
Puﬂ)(Q) = Pcp(u),v’ (9)
Ru,v(‘]) = R<p(u),v’ (Q)
Eum(q) = Eap(u),v’ (q)

for all u < v and all poset isomorphism ¢ : [e,v] — [e,v'].

In Chapter 4 we generalize Theorem 0.7.6 to any Coxeter group, and hence we

can prove the analogue of Corollary 0.7.7 for any Coxeter group.
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Chapter 1

Boolean elements

In this chapter, we intyroduce the Boolean elements and we give the preliminary
results that make easier the combinatorics of these elements.

1.1 Definition and preliminary results

Definition. Let (W, S) be any Coxeter system and let ¢ be a reflection in W.
As in [49], we call t a Boolean reflection if it admits a Boolean expression, which
is, by definition, a reduced expression $i...8;,_18n8n_1...s1 with s, € S for all
h € [n] and s; # s; if i # j. Call any element € W a Boolean element if it is
smaller than a Boolean reflection.

We need the following lemma.

Lemma 1.1.1 Given a Coxeter system (W, S), let s,t1,...,t, € S, s # t; for
all i € [n], and I(t1...t,) = n. Furthermore let t;,...t;, be a reduced subword of

t1...tn such that sti,..t;, <ti..t,s. Then s commutes with every t; ,...,t;,.

Proof. Since s # t; for all i € [n], st;,...t;, and t;...t,s are reduced expressions.

Then there exists a reduced subword ¢;,...t;, ,, of #;...t,s such that
tj1 "'tjh+1 = Stil ---tih
First of all, #;, ., = s because s must appear in t;, ...t;, ., which is a subword of

t1...tps and s # t; for all ¢ € [n]. By Tits’ Word Theorem st;, ...t;, and tj,...t;, s
are linked by a sequence of braid moves. The analysis of this sequence give us

35
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the assertion.

Let us start from st;,...t;,. We do all the braid moves until we encounter a

W -
braid move that involves s. There must be such a move in the sequence because
at the end s will be in the rightmost place. So we reach an expression of the
following type:

st t’;b

and the next braid move involves s and (necessarily) ;. Being t;; # s, it must

be ast, = st;;, namely s commutes with Z; . So we do that move and we obtain
*1

bir sty tl;z .

At the mt" step we reach an expression of the following type:

ti1 Lt st -tih

tm—1 tm "

and we have proved that s commutes with every ¢;,,...,¢ As before, we

a1
do all the following braid moves of the sequence till we encounter a move that
involves s. Again there must be such a move in the sequence because at the
end s will be in the rightmost place. So we reach an expression of the following
type:

t .ty sty .ty

If the following braid move involves s and ¢y _ we do it and return to the
(m— 1)t step. If it involves s and ty , since s # ti, it must be ags, = sty ,
namely s commutes with ¢;; . We do the move obtaining

ti’l---ti’m Sti’erl---ti;l

and we pass at the (m + 1)** step, having proved that s commutes also with
ti;n.
At the end of the sequence of braid moves we obtain ¢;,...t;, s and we prove that

s commutes with every ¢;,,...,¢;,, that is with every t;,,...,¢;,. O

The following lemma essentially says what one gains in Tits’” Word Theorem
(Theorem 0.3.6) by adding the hypothesis that the element u € W is Boolean.
A short braid move is, by definition, a braid move of the shortest type (namely
(s, = 88'). Given any s € S and any word 7 € S* (where S* denotes the free
monoid on the set S), we denote by (s) the number of occurrences of the letter

s in the word .
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Lemma 1.1.2 Given a Cozeter system (W, S), let u € W be a Boolean element
and let w be a reduced expression of u which is subword of the Boolean expression

81...8p-..-81. Then:

1. any other reduced expression u of u which is a subword of s1...8,...81

is linked to W by a sequence of short braid moves;

2. any expression u of u (not necessarily reduced) which is a subword of

S1...8p-..51 18 linked to w by a sequence of short braid and nil moves.

Proof. 1). Let i be the minimum of the j € [n] such that the dispositions of
the factors s; in @ and u are different (i.e. for every h < i, (ss) = u(ss) and
sp, appears on the same side in @ and in w if %(sy) = u(sp) = 1). Obviously
u(s;) = 0 if and only if u(s;) = 0.

It is not possible that u(s;) # w(s;). In fact, suppose u(s;) = 2, u(s;) = 1;
after cancelling from @ and u the factors s; for h < i and the factor s; in the
same position, we would obtain two reduced expressions of the same element,
one with and the other without factors s;.

So u(s;) =u(s;) = 1. After cancelling the factors s for h < ¢ from 7 and u, we
obtain two reduced expressions of the same element, one with only one factor
s; at the leftmost place and the other with only one factor s; at the rightmost
place. Since s; # s; for every i # j, by Lemma 1.1.1 s; commutes with every
sj, j > 1, that occurs in u. Iterating this procedure, we get the assertion.

2). Let u = t1...t; (t; € S) and let r be such that #;...¢, is reduced, but
t1...tptrp1 is not. By the Exchange Property (Theorem 0.3.1), there exists a
unique ¢ such that t1 ... tptpp1 =11 ... ti.. .ty (obviously this last expression is
reduced) and t;yq ...¢.trr1 = titiy1...t-. Since these are both reduced sub-
words of 81 ...5,...81, by 1) they are linked by a sequence of short braid moves.
So from the expression ¢; ... ¢;t;41 ... tptr41 - . . tg, using only short braid moves,
we can reach the expression 1 ...tt;t;41 ... tptr12... ¢, and then we can do a
nil move. By iterating this procedure, using only short braid and nil moves, we
obtain a reduced expression of u which is subword of s1...s,...s;. Hence the

assertion follows by 1). O

Corollary 1.1.3 Given a Cozeter system (W, S), let w, u be two reduced ex-
pressions of the same Boolean element w € W which are both subwords of a

Boolean expression s1 ...Sy ...81. Then u(s;) = u(s;) for all i € [n].

Proof. It is straightforward from Lemma 1.1.2. O
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Now we state two technical results that are easy to prove. We assume that

the linear Coxeter systems have Coxeter graphs of the types in Section 0.4.

Proposition 1.1.4 Let (W, S) be a strictly linear Coxeter system and lett € W
be a Boolean reflection. Then t admits a Boolean expression of one of the

following types:
1. SaSa—1---Si+1 SbSb+1:--5i—15iSi—1---Sp+15p Si+1:--Sa—15a,
2. SpShb+1 ---Si—1 SaSa—1---Si4+15iSi+1 ---Sa—15a Si—1---Sb+15b,

for appropriate 0 < b <i<a<n.O

Proposition 1.1.5 Let (W,S = {s1,...,8,}) be a non-strictly linear Cozeter
system and let t € W be a Boolean reflection. Then, up to a “rotation” of the
indices of the generators (that is up to adding a fized r € [n — 1] to their indices
and taking the indices modulo n), t admits a Boolean expression of one of the

following types:
1. SaSa—1---Si+1 SbShb+1::-5i—15iSi—1---Sp+15p Si+1:--Sa—15a,
2. SpShb+1 ---Si—1 SaSa—1---Si4+15iSi+1 ---Sa—15a Si—1---Sb+15b,

for appropriate 0 < b <i < a <n. Ifs; <t forallié€ [n], we can assume
aZ(@+1)ini1),b# @ —1)in2).0

1.2 Notation on Boolean permutations

Let us specialize to the case W = &(n + 1). Recall that the set S of Coxeter
generators is the set of simple transpositions {s; = (i,i + 1) for all 7 € [n]}, the

set of reflections is the set of transpositions
T(S(n+1) = {(i,j) : 1<i<j<n+1},

and the transposition (7, j) admits s;8;41 - - Sj—25j—15j—2 - - - $i+18; as a reduced
expression. So every reflection in the symmetric group is Boolean and an ele-
ment v is Boolean if and only if v is smaller than the top transposition (1,n+1).
Equivalently, v is Boolean if and only if it admits a reduced expression which
is a subword of 81 -+ 8,_15n8n—1 - - - 81. Note that a Boolean element can have

several reduced expressions which are all subwords of s1---$,_18,8n_1""-S1.
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Now we introduce the notation that will be used in Chapter 2.

n-Boolean sequences. After Corollary 1.1.3, we denote by w; the number
of occurrences of s; in any reduced expression of u which is a subword of the
Boolean expression sy ...8p...51 of (1,n 4+ 1). It is sometimes convenient to
handle Boolean elements in terms of sequences. So we introduce a well-defined
surjective map ¢ from the interval [e, (1,n + 1)] to the set of the n-Boolean se-
quences by sending v to (u1,...,un). An n-Boolean sequence is a sequence
(z1,...,2,) of n numbers chosen in {0,1,2} that avoids the pattern |2,0|,
where |2, 0]-avoidance means that there does not exist an ¢ € [n — 1] such that
(zi,rir1) = (2,0) and that z, # 2. All properties are easily checked.

Given a n-Boolean sequence z = (z1,...,z,), we define:
() = Z T,
i€[n]
ple) = |[{ie€n—-1]:2;=1, z;41 #0}|

Then the cardinality of the preimage of the sequence z is equal to 2°(*) and
I(u) =1(¢p(u)) for all u € [e, (1,n + 1)].

If we endow the range with the component-wise partial order, then it is easy to
check that ¢ is a morphism of posets.

Now we introduced the notation that will be used in Chapter 3.
The maps ¢g(u,v) and ¢r,(u,v). For convenience, for all J C S, we iden-
tify J with the set {i € [n] : s; € J}. Let w be a Boolean permutation of
S(n + 1). The permutation w can have several reduced expressions which
are subwords of s1 -8, 18,8,_1---81. We consider all these expressions as
obtained from si-:-S,_18nSn—1 -1 by deleting some letters. For example,
consider the Boolean permutation w € &(4) equal to (1,2)(3,4) in the cyclic
notation. Then w has the following two reduced expressions which are obtained

from s1s9535251 in two different ways:
(1) s3s1 = §153838281
(2) s183 = s1538382861

where § means that s has been deleted. We say that s; is “on the right” in (1)
and “on the left” in (2).

Given two Boolean permutations u,v € &(n + 1)/, u < v, we want to
construct two (2 x n)-rectangular tableaux with entries in {0,1;,1,,2}.
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Suppose first that v £ s1 - $,_15,. After Lemma 1.1.2, we choose

- the unique reduced expression U of the permutation v which is a subword
of 81 -+ Sp_18nSn—1 - - - s1 and satisfies the condition that, for all k£ € [n—1]
such that 7(sg) = 1 and U(sgs1) = 0, the letter s is on the right;

- the unique Boolean expression u of v which is a subword of v and satisfies
the further condition that, for all £ € [n—1] such that @(sy) = 1, T(sg4+1) =
0 and 9(sy) = 2, the letter s is on the right.

We call (w,v) the right Boolean expressions of (u,v). Then ¢r(u,v) is the

2 x n-rectangular tableau

V1[U2V3[V4]| --- [Un
1fUobgbs] - -+ [Up

where v; (respectively u;) is 2, 1;, 1,., or 0 according as to whether T (respectively
u) has two letters s;, one letter s; on the left, one letter s; on the right or no
letters s;. Finally, we mark the i-th column with o if i € J, with x if ¢ ¢ .J.
The dual conditions give rise to the left Boolean expressions of (u,v) and to the
(2 x n)-rectangular tableau ¢y, (u,v).

For convenience, in both tableaux ¢g(u,v) and ¢ (u,v), we set v, = 1; if
U(sp) =1 and u, = 1; if u(s,) = 1.

For example, if v = s15355565758865554 and u = s7s5s3 are permutations of

S(9), then the right Boolean expressions (%, ) of (u,v) are
- U = 835556575856555451;
- U = 838785;
the left Boolean expressions (@, ) of (u,v) are
- U = 815355565758565554;
- U = 8385S7;

and, assuming J = {2,4,6}, we have

X OXOXO XX X OX O X0 XX
1./0(1;1,.2|2]1]1; 1;101;1,.2]21,1;
br(u,v) = 010101 ]0|L]0 or(u,v) = 0/0/1,{0[1,]0]1;0
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If v <s1---8,-18n, we define the right and the left Boolean expressions to
be equal, with all the letters on the left. Thus, in this case, ¢r(u,v) = ¢r,(u,v)
and all non-zero entries are equal to 1;.

Furthermore, we introduce the following notation. Choose one of the two
tableaux ¢r(u,v), ¢r,(u,v). We denote by

abcd £|

the cardinality of the set:

ie [n] . (Uiavi+lavi+2avi+37"') = (aaba cada"')a
(Wiy Wit 1, Wigo, Uiys,...) = (@, B,7,0,...)

We let a,b,c,d,...,a,83,7,6,... € {0,1;,1,,2, f, Z,%} where by @ (respec-
tively Z) we mean that the entry must be # 0 (respectively # 2) and where x
stands for any entry. As above, if necessary, we use O or X to further require

that a column belong to J or not. In the previous example,

X
]-l*
(L]0,

I
2o

both in ¢g(u,v) and ¢, (u,v). In other words, we are counting the sub-tableaux
X

]-l *
of g (u,v) or of ¢ (u,v) matching (1[0

Now, let v be a Boolean permutation in &(n + 1) and let T be any of its

reduced expressions which are subwords of s1---8,_18,8,_1 -+ 81. By Propo-

| vict v Vg |

* 0 *
]-l ]-l *
2, 1; 2 *
* 1, #0
1; 1, 0
Table 1.1:

sition 0.3.2 and Tits’ Word Theorem (Theorem 0.3.6), we have that s; ¢ Dr,(v)
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if and only if we are in one of the (mutually exclusive) possibilities in Table 1.2,
where v;—1, v;, v;41 encode the types of occurrences of s;_1, s;, s;41 in v, and
where * stands for any entry. In particular, if v is a Boolean permutation in
&(n + 1)7, then this must be true for all i € J.



Chapter 2

R-polynomials and

Kazhdan-Lusztig polynomials

In this Chapter we give some closed explicit product formulae valid in the case
that the indexing elements are Boolean. In particular, for any Coxeter system,
we compute the R-polynomials, and for any linear Coxeter system we compute
the Kazhdan-Lusztig polynomials, the Kazhdan-Lusztig elements and the inter-
section homology Poincaré polynomials. Moreover the formula for the Kazhdan-
Lusztig polynomials allows us to prove Lusztig’s conjecture of the combinatorial
invariance foe Boolean elements and to list all pairs (u,v) of Boolean elements
with v < v, namely with p(u,v) # 0.

Throughout this chapter, when the Coxeter group W is the symmetric group,
we make use of the notion of n-Boolean sequence we introduced in Section 1.2.

2.1 R-polynomials

Recall that for any s € S and any word T € S* (where S* denotes the free
monoid on the set S), we denote by Z(s) the number of occurrences of the letter

s in the word .

Theorem 2.1.1 Given any Cozeter system (W,S), let u,v € W be Boolean
elements, u < v. Fiz a reduced expression v of v which is a subword of a

Boolean expression si...Sp...51 and a reduced expression T of u which is a

43
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subword of v. Then
Ruw(@) = (g — 1)/ 72 (¢" — g + 1)",

where
T(s:) = 2
a= Hz € [n]: o(s:) and m(s;,s;) = 2, Vj > i such that u(s;) # 0}‘ .

In particular, if W = &(n+1) and s1,..., S, are the usual Cozeter generators
of §(n +1) , this means that:

=9
azHiE[n]:vl_ B H
U,i—O ui+1—0

Proof. We proceed by induction on n, the result being clear for n = 1.

If 9(s1) = u(s1) = 0, we conclude right away by induction since v < v <
89...8p—18nSn—1...S2. S0 we suppose T(s;) # 0 and focus our attention on the
number and the position of the occurrences of s; in v and u. We have to consider
the following cases, in which s; means that s; has been deleted and in which
we do not bother about s;, i # 1.

Then by Theorem 0.5.2 we get Ry, ,(¢) = Rs,u,s10(¢) and we conclude by induc-

tion since sju < s10 < $9...8p_15pSp—1---52-

Then by Theorem 0.5.2 we get Ry v(¢) = qRs u,si0 + (¢ — 1) Ry 5,0(q) and we

conclude by induction since syju € s1v and u < 510 < S9...8,157Sp—1.--S2.

Like ay) using the right version of Theorem 0.5.2.
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T =810 080000081
) § _ C
U= S1-eereennn Spevereeens S1
Ruw(q) = Rsyu,s,0(q) = Rsyusy.si0s, (@) and we conclude by induction since

s1usy < 51081 < 89...8p-18nSn—1---82.

Ryuw(q) = Rsyu,s10(Q) = qRs usy 5108, (@) + (¢ — 1) Rsyu,s1vs; and we conclude by

induction since sjus; £ 51081, s1u < 81081 < 82...87,-1S7Sp—1---S2-

We have to distinguish two subcases:
1) syu £ s1v

Then we get

Ru,v (q) = qu1u,slv(q) + (q - ]-)Ru,slv = (q - 1)[qRusl,slvs1 ((1) + (q - ]-)Ru,slvsl]

and we conclude by induction since us; € s1vs1, u < 81081 < 83...8,—18pSn—1---S2.
2) sju < 510
Then we get
Ruw(q) = qRsyu,s10(q) + (0 — D) Rusio =
= qRs,us1 51081 (@) + (4 — D]aRusy 5108, (@) + (@ = 1) Ru 510, (0)] =
= (¢* = 4+ 1) Rus108,(9)

being, by Lemma 1.1.1, u = sjus; and us; £ s1vs;. So we conclude by induction
since u < 51081 < $2...85_150Sn_1.-.52.

Call ©' and v' the elements which are represented by the expressions we
obtain from w and v by deleting all the letters s;. In every case, except in
subcase 2) of case c4), we have

Ru,v(q) = (q - 1)6(31)_5(81)Ru’7v’ (q)
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Recall that we are in subcase 2) of case c4) when T (s1) = 2, @ (s1) = 0 and
siu < s1v, namely, by Lemma 1.1.1, when v (s1) = 2, @ (s1) = 0 and s;
commutes with every s; j > 1 such that @ (s;) # 0. In this case

Ru.(q) = (‘12 —q+ 1Ry . (q).

The result follows by iterating this procedure. [

Example 1 Let us calculate the R-polynomial indexed by u = s15258581 and
U = $1828354555654538251 in &(7). We immediately find that I(u,v) = 6 and
a = |{3}|, and therefore

Ruu(q) = (g—1)*(¢> —q+1).

As a corollary of Theorem 2.1.1, we give the proof of Conjecture 7.7 of [15].

Corollary 2.1.2 Let u,v € &(n) be such that u < v < (i,7) for some i,j € [n],
i < j. Then there exists a € N such that

Ryo(q) = (g — 1)%(¢* — g + 1)z[Hwv)=d]

Proof. It is straightforward from Theorem 2.1.1. In fact the transposition
(i,7) is a Boolean reflection of Boolean expression s;S;11...5j—25j—18j—2...8i+15;
(where, as always, s, = (k,k + 1) for all k). O

We think that it is worthwhile to mention the following equivalence that
deals with the R-polynomials which are product of factors of types (¢ — 1) and
(¢> — g+ 1), such as those of Theorem 2.1.1.

Theorem 2.1.3 Given a Cozxeter system (W,S), let w € W. Then the follow-

ing are equivalent:

1. a(u, sv) = a(su,sv) + 1 for all u,v < w and s € S such that u < su <

sv < vy
2. Ru,v(q) = (q — ]_)a(“’”) (q2 —q + 1)%[1(“70)7"‘(“70)] fOT‘ all u S v S w;

where, for x,y € W, x <y, (¢ — 1)%&Y) s the largest power of (¢ — 1) that
divides R ,(q).

Proof. Let us prove that 1) implies 2) by induction on I(v). Let s € Dy, (v). If
s € Dr(u) or s ¢ Dr,(u) but su £ sv then we conclude by induction. Otherwise
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Ry (q) = qRsu,sv(q) + (¢ — 1) Ry s0(q) that, by inductive assumption, is equal
t0 g[(q — 1)) (¢ — g + 1) 21w malswsvll] 4 (g —1)[(g — 1)2(5) (¢ — g +
1)%[1(“73”)_‘1(“75”)1]. By hypothesis, this polynomial is equal to (g—1)2(5%:5v) (¢ —
q+ 1)%[l(su,sv)fa(su,sv)][q +(q— 1)2]‘

Conversely fix (if there are) s € S such that u < su < sv < v. Then R, ,(q) =
G Rosu50(9) + (4= 1) Ru,s0(q) = ql(g— 1)) (g2 — g+ 1) 2l (swam)=alswanl 4 (g
D[(g—1)20w5) (g2 — g+ 1)slwev)=e(wavl] But Ry, o (g) = (g — 1)) (¢* — g +
1)%[““’”)’“(“’”)1 and an easy argument, of divisibility shows that this is possible

only if a(u, sv) = a(su,sv) + 1. O

2.2 Kazhdan-Lusztig polynomials

Theorem 2.2.1 Let u and v be Boolean elements in &(n + 1), u < v. Then

Puu(q) =(1+q)",

=2 =2
b:‘{ke[n]: vk Z];H—o}"
1=

Proof. Fix a reduced expression U of v which is a subword of the Boolean

where

expression Sy ...Sy...s1 of (1,n+ 1) and a reduced expression @ of u which is
a subword of v. Let us focus our attention on the number and the position of
the factors sy in 7 and w. We consider the following cases:

a) vy =u; = 1.
We may assume that the letter s; is at the leftmost place in © and w. Then,
by Theorem 0.5.9, we get Py, (q) = Psyu,5,0(0) + qPus10(0) = Poyuys,0(0)
since u £ $10.

b) v1 =1, u; =0.
We may assume that the letter s; is at the leftmost place in v. Then,
by Corollary 0.5.10, we get P, ,(q) = Ps,u»(¢) and we conclude that
P, y(q) = Py s,(q) as in a).

c) v =u =2.
Pum(Q) = Ps1u7slv(q) + qpu731v(q) = Ps1u7slv(q) since u g S10. SO, as in
a‘)a we get Pu,v (q) = PS1US17S1'US1 (q)
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)

v = 2, uy = 1.
We may assume that the letter s; is at the leftmost place in . By Corol-
lary 0.5.10, P, »(q) = Ps,v,0(q) and we are in case e).

’U1:2,U1:0.

We must distinguish two subcases:
1) sju # usy

By Lemma 1.1.1, this happens if and only if us # 0, or, equivalently, if
and only if s1wsy is reduced. By Corollary 0.5.10 (first left and then right
version), we get Py y(¢) = Ps;uw(q) = Psyusi,v(g) and, as in c), we get
Puv(@) = Pusyvs, (9)-

2) s1u = usy

Concerning the factors so, we have us = 0 and two possibilities for v:

1) (%} 21,

i) vy =2,

(necessarily vy # 0 since v = 2).

In i), we may assume that the letter s is at the leftmost place in . Then
sz € Dp(v). So P, ,(q) = Psyuw(q) and we are in case e) 1). We get
P, »(q) = Psyu,s,0s,(q). As to the factors sz, we are in case a) and we get
Py.v(q) = Py s,s1vs: (q) finding that also the factors s, give no contribution.

In ii), we get

Uzv)
Puw(@) = Psyus10(q) + Pusio(q) — Z q > plz,s10)Py:(q).
2:81€DL(2)

By the fact that s; commutes with every s; that occurs in @ and by
Corollary 0.5.10, we get Ps,y 5,0 = Pusi,s10 = Pu,siv and as in b) we get
Pu,slv = Pu,slvsl- So

HERD)
Pyw(a) = (1 + @) Pusivs: (@) — Z a > p(z,510)Py:(q)
z:81E€DL(2)

Now we claim that {z:u < z < syv, s1 € Dp(2)} C {z: 52 £ z}. In fact,
z < syv implies that z admits a reduced expression z's; with z'(s1) = 0.

Since s1 € Dr,(2), s1Z's1 is not reduced and so, by the Exchange Property,
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we get that s1Z's; and Zz' represent the same element, as sz’ is reduced.
Applying Lemma 1.1.1 to 512’ = Z's;, we obtain that s; commutes with
every letter that occurs in Z’, namely z'(s2) = 0.

Therefore s € Dr(s1v) \ Dr(2), and we find that

1
degP; s, = degPs, 2 5,0 < 3 (I(z, s1v) — 2)

(since s2z # s1v). So u(z,s1v) = 0 for all z in the sum and this gives
Pum(Q) =(1+ Q)Pmswsl ()

In all cases, the P-polynomial indexed by u and v is equal to the P-polynomial
indexed by the elements that we obtain from @ and T by erasing all the factors
s1, except in cases d) and e) when they fall under the case e)-2)-ii). In these
cases we get a factor (1 + q).

By iterating this procedure, the result follows. [

We illustrate Theorem 2.2.1 with an example.

Example 2 Let W = &(8), u = $15557 and v = $15283545586575655535251 -
Then
o(v) =(2,2,2,1,2,2,1)
¢(u) = (1,0,0,0,1,0,1).
There are exactly 3 sub-tableaux of the type
[2]2

mn

Therefore P, (q) = (1 + q)>.

Note that, similarly, by Theorem 2.1.1, the number of sub-tableaux of the type
2]
0

0]

computes the R-polynomial R, ,(q).

Now we extend this result to other Coxeter systems. The same argument of
the proof of Theorem 2.2.1 holds for every Coxeter system till we encounter the
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case e)-2), where we strongly use the special properties of the symmetric group.
So we need to proceed in a different way.

We show how Theorems 2.1.1 and 2.2.1, in conjunction with Lemma 1.1.2, imply
the result for strictly linear Coxeter systems. First we need the following lemma,
where we use the same symbols sy, ..., s, for both the generators of W and the

generators of &(m + 1).

Lemma 2.2.2 Let (W,S = {s1,...,8m}) be a strictly linear Coxeter system.
Let t € W be a Boolean reflection with Boolean expression t. Consider the map
Ve, tlw — S(m + 1) defined as follows: if z € [e,t]lw admits the reduced
expression Z which is a subword of t, then 1 (z) is the element of &(m + 1)

represented by the same expression Z. Then 1 is an isomorphism of posets from
[6, t]W to [6, w(t)]G(m—ﬁ-l) .

Proof. The map 1 is well defined: in fact, by Lemma 1.1.2, any two such
reduced expression of the same z € W are linked by short braid moves, and
W and &(m + 1) share the same short braid moves. Moreover, the expression
t =t;...tg 1tptn_1...11 is reduced also in &(m + 1). In fact, suppose, by
contradiction, that there exists k € [n] such that ¢1...tp_1tntn_1...tg—1 is
reduced while ¢y ...t,_1tntp—1 - ..t isnot. Then, clearly, ty, ... th—1tptp—1 ...tk
is not reduced (by hypothesis, ¢; # ¢; if i # j). Hence, by Lemma 1.1.1,
t, commutes with ¢; for all j > k in &(m + 1), and so also in W, and this
is a contradiction because t is reduced in W. This means that  is a Boolean
expression of the Boolean reflection (t) of &(m+1). Now Lemma 1.1.2 implies
that I(z) = I(¥(2)), for all z € [e,t]w, and that ¢ is an isomorphism of posets
from [e,tlw to [e,¥(t)]g(m+1) by the characterization of the Bruhat order in

terms of reduced expressions. [

Theorem 2.2.3 Let (W, S ={s1,...,8m}) be a strictly linear Cozeter system.
Let u,v € W be such that u < v <t, where t is a Boolean reflection. Then

Puw(q) = Pyuy,pv) (@),

where ¢ is as in Lemma 2.2.2, and Py(y) y(v)(q) can be computed as in Theo-
rem 2.2.1.

Proof. First of all we fix a Boolean expression t of t, a reduced expression 7 of
v which is a subword of ¥ and a reduced expression u of u which is a subword

of U.
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Recall that, if an element z has a reduced expression Z which is a subword of
U, then the map ¢ sends z to the element of &(m + 1) represented by the same
expression Z. Theorem 2.1.1 shows that the R-polynomial depends only on the
chosen reduced expression and on the commutation relations between the gen-
erators of the Coxeter system. So for all z,y € [u,v]w, R y(q) = Ry(a),u(y)(@)-
Finally property 4) of Theorem 0.5.8, in conjunction with Lemma 2.2.2, implies
that the same equality also holds for the P-polynomials. [

Example 3 Let (W, S = {s1,2,83,84}) be a strictly linear Cozeter system,
U = $4815253525184, U = S451. Then ¥(v) = $4515283525184 = S1525354835251 €
6(5)7 ¢(u) = 5451 € 6(5)’ and Pu,v(q) = Pzp(u),w(v) (q) = (1 + q)2'

The following result deals with the non-strictly linear Coxeter systems.

Theorem 2.2.4 Let (W, S = {s1,...,8m}) be a non-strictly linear Cozxeter sys-
tem. Let u,v € W be such that u < v <t where t is a Boolean reflection that
we can assume such that s; <t for all i € [m]. Then there exists b € N such

that:
Puula) = (1+4q)".

Fiz a Boolean expression t =t ...tp_1tptn_1...t1 for t of the type shown in
Proposition 1.1.5, a reduced expression U of v which is a subword of t and a
reduced expression u of u which is a subword of v. Suppose that t; is, together
with ta, the only other generator that does not commute with t,. Then P, ,(q) =
(l-l-q)bl Py 1 (q), where u' and v’ are the elements represented by the expressions

we obtain by erasing all the letters t1 in w and v, and where

b 1, ifo(t1) =2, T(t2) =0 and u(t;) = 0;
B 0, otherwise.

Then compute Py v (q) as in Theorem 2.2.8 (there are no longer occurrences of

t).

Proof. We can repeat the same argument of the proof of Theorem 2.2.1, re-
placing s; with ¢, till we encounter the case e)-2), that now means that v has a
letter t; both at the rightmost and at the leftmost place while @ has no letters
t1, ta, t;. So we get:

1(=z,0)
Pu,v(q) = th1u,t1v(Q) + Pu7t1v(q) - Z q 2 u(z, tl'U)sz(q)'
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By the fact that #; commutes with every #; that occurs in @ and by Corol-
lary 0.5.10, we get P utv = Puti,tiv = Puio and as in b) we get Py =

Pu,t1vt1 . SO

Uzv)
Pyw(a) = (1 + @) Puyon, (9) — Z q > p(zt1v) Py, (q).
Z:t1EDL(Z)

Now we claim that {z : u < 2z < tiv, t1 € Dr(2)} C{z:t2 £ 2, t; £ z}. In
fact, z < t;v implies that z admits a reduced expression z't; with Z'(¢;) = 0.
Since t; € Dr(z), t1Z't; is not reduced and so, by the Exchange Property, we
get that £;Z't; and Z' represent the same element, as ;7' is reduced. Applying
Lemma 1.1.1 to t;Z' = z't;, we obtain that #; commutes with every letter that
occurs in z’, namely Z'(t2) = Z'(t;) = 0.

Therefore t2 € Dy, (t1v) \ Dr(2), and we find that

1
degP, t,v = degPy,z 110 < 5 (I(z,t1v) — 2)

(since taz # t1v). So p(z,t1v) = 0 for all z in the sum and this gives P, ,(¢) =
(1 + q)Pu,tlvh (Q)

Now, since v’ <v' <ty...th_1tntn—1 ...t2, we can think of our elements as in
the strictly linear Coxeter system (W', S\ {t;}). O

Remarks. It is worthwhile to remark the following facts.

1. If the Coxeter system is not irreducible, and S = J S; is the decomposition
into irreducible components, then the expression ty...t, _1t,ty,_1...% is

reduced only if all the generators t; belong to the same S;.

2. If W = &(n), it is easy to see that a Boolean permutation v is always
covexillary (3412 avoiding). Therefore, the polynomial P, ,(¢) can also
be computed using the algorithm given in [44]. However, it seems to
be difficult to derive the explicit formulae of Theorem 2.2.1 from this
algorithm if v < (1, n).

3. The results in this section do not hold for general Coxeter systems. In fact,
let (W, S) be a Coxeter system such that S contains s1, s2, s3 and r with
m(s;,s;) = 2 for all 4 # j, m(s;,r) > 3 for all i. Then P, ,(¢q) =1+ 2g,

where v = 51821rS831rS2S1, U = S35251.
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2.3 Combinatorial invariance

In this section we prove that Lusztig’s conjecture of the combinatorial invariance
(Conjecture 0.6.1) is true for Boolean elements in strictly linear Coxeter groups.
More precisely, we prove that, given two Boolean elements u and v in a strictly
linear Coxeter group W, the polynomial P, ,(g) can be easily computed from

l(u,v), ¢1(u,v) and ¢z (u,v), where

ci(u,v) = |Ci(u,v)],
{z € [u,v] : l(z,v) = i},

92

=

&
i

for i = 1,2. The elements of C(u,v) are the coatoms of [u,v].
Furthermore, let g;(u,v) = |G;(u,v)| and h;(u,v) = |H;(u,v)|, where

Gi(u,v) = {z€u,v]:2z veT(W),l(z,v) = (1+2i)},
Hi(u,v) = {z€u,v]:u"'z€T(W),l(u,z)=(1+2i)},

for all possible ¢ € N. Thanks to the following theorem due to Dyer [32], they

are all combinatorial invariants of [u,v] as a poset.

Theorem 2.3.1 Let (W, S) be a Coxeter system, u,v € W. The isomorphism
type of the poset [u,v] determines the isomorphism type of its Bruhat graph.

As we can deduce from (6), if I(u,v) < 4, the R-polynomial R, ,(¢) depends
only on g;(u,v) and h;(u,v). At the end of this section we show that this is not
true in general, and we give a counterexample. The smallest &(n) in which we
can find a counterexample for Boolean elements is &(10).

Let us first consider the case u and v Boolean elements in &(n + 1). To
simplify notation, we set
vi=j viy1 =k

Xjw = |{i € [n];

H-

Uizl Uij41 =M

In particular, Xi’;o means that v; = 2, v;41 can be any number, u; = 1 and
w;+1 must be different from 0. We write, respectively, a(u,v) and b(u,v) for
the exponents in Theorem 2.1.1 and in Theorem 2.2.1, and we always omit the
dependence on (u,v) when no confusion arises.

In the proof of the following results, we use Tits’ Word Theorem (Theorem 0.3.6)
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and Lemma 1.1.2 without explicit mention.

Proposition 2.3.2 Let u and v be Boolean elements in G(n+1), u < v. Then

I+b—a, (2.1)

l b—a
(-1
2(l )+

C1

o (b—a+2l—-3)—b. (2.2)
Proof. Equation (2.1) follows from a result of Brenti [11], valid in any Coxeter
system W and for any z,y € W. It states that ¢; (z,y) is equal to the coefficient
of ¢in P, ,(q) (in this case b by Theorem 2.2.1) minus (—1) times the coefficient
of ¢ in R, 4(q) (in this case (—=1)"+1(I — a) by Theorem 2.1.1).

Fix a reduced expression T of v which is a subword of the Boolean expression
S1...8n...81 of (1,n+ 1) and a reduced expression @ of u which is a subword

of . Then w is obtained from v by deleting ! letters. We have that
B
er=1a1- By o,

where:

e A is the set of the reduced expressions Z we can obtain from T by deleting

only 2 letters of those we deleted to obtain u;

e B C Ax Aisthe set of pairs (Z, z) of distinct expressions in A such that Z

and z are linked by short braid moves, and so represent the same element;
e ( is the set of the reduced expressions z such that:

— Z is obtained from ¥ by deleting 2 letters, s; and s;, such that at least

one of them, say s;, is not deleted in w;

— Z does not represent an element already represented by an expression
in A;
— @ is linked by short braid moves to a subword of Z.

Let us calculate |A|, |B| and |C|.

A). Let z be an expression we obtain from T by deleting two factors, say s;
and s;, of those we deleted to obtain @. It fails to be reduced if and only if for
at least one between i and k, say ¢, we have (2(s;-1),2(s;)) = (2,0). If i = j,
this happens only if (v;—1,v;) = (2,2) and u; = 0. If 4 # j, this happens only
if (vi—1,v;) = (2,1) and u; = 0; in this case, the other factor s; we are deleting
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can be any of the other letters of ¥ that are deleted in @, except s; 1. These
are ] —2if u;—1 = 1,1 -3 if u;—1 = 0. Being careful not to count twice the case
(2(si=1), 2(s1), 2(sk—1), 2(sk)) = (2,0,2,0), we get:

; 24+X573 1+ X7 +X5
|A|=( )— X2 S aene Y a-w)].

2
k=3 b2t X2

that, being Xi’g = b by Theorem 2.2.1, becomes:

] 1+X75
|A|=(2>— b+ > (I—k) | —(—2—Xg).

k=3

B). Let z and z be two different expression in A linked by braid moves. Nec-
essarily, to obtain Z and z, we have deleted letters of the same type, say s; and
sj. Suppose that we have deleted the s; on the left to obtain Z and on the
right to obtain z (so necessarily v; = 2). If Z and z are linked by braid moves,
then z;+1 = 0. But v;41 # 0 because v; = 2, and so j must be ¢ + 1. Hence
Bl _ y21

2 0,0
(). Necessarily v; = 2, u; = 1 and u;+; = 0, while z;11 # 0 otherwise Z would
represent an element already represented by an expression in A. The element
c of expression ¢ equal to v with only the s; deleted is a coatom. In fact it
is reduced, otherwise it should be v; = 1 and j = ¢ + 1 (Z is reduced), but
zit1 # 0. Conversely, we obtain an element of those we are now counting from
every coatom c with ¢; = 2 deleting the letter s; not deleted in w. The number
of such coatoms is (¢; —2) for all ¢ such that v; = 2, u; = 1 and u; 11 = 0. Being

careful to count without repetition, we get:

Xi5+1

Cl= Y (e -k,

k=2
that, by (2.1), becomes:

Xip+1

ICl= Y (+b—a—k).

k=2
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Being Xg,’g = a by Theorem2.1.1, our assertion is proved. O

Now we are able to prove the main theorem of this section.

Theorem 2.3.3 Let (W,S) be a strictly linear Coxeter system, u and v be
Boolean elements of W. Then R, ,(q) = (¢ —1)!"2%(¢*> —q¢+1)* and P, ,(q) =
(14 q)® where

a = 21—0—%(01—5)—02,
b = l+%(cl—3)—02.

Proof. If W = &(n + 1), the result follows combining (2.1) and (2.2). Oth-
erwise, by the proof of Theorem 2.2.3, [u,v] is poset-isomorphic to a certain
interval in &(n), for an appropriate n, and share the same Kazhdan-Lusztig

polynomial with it. This proves our assertion. [

Finally we show that considering only the g; and the h; is not the right way

to tackle Lusztig’s conjecture. In fact, we have the following example.
Example 2.3.4 Let W = 6(10),

UV = 51525354555657585954535251, ’U’ = 515253545556575859585755545251,

U = 5154, u' = 51545759.
Then

¢(U) = (2’ 2’ 2’ 27 17 17 17 ]" 1) ¢(vl) = (2’ 2’ 1’ 27 27 17 27 27 1)
¢(u) = (1,0,0,1,0,0,0,0,0) ¢(u') = (1,0,0,1,0,0,1,0,1)

and |l = 11, ¢ = go = 12, hg = 10, hy = 4, and g1 = g; = h; = 0, for
i > 1, for both the intervals [u,v] and [u',v']. However P, , = (1 + q)* while
Py = (1+q). Of course, this agrees with the result in Theorem 2.3.3 since
ca(u,v) = 63 while ca(u’,v") = 62.

2.4 The top coefficient

In this section we classify all those Kazhdan-Lusztig polynomials indexed by
Boolean elements in a linear Coxeter system (W,S) which have the highest

possible degree. These particular polynomials play a fundamental role in the
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construction of the Kazhdan-Lusztig representations (see [40]). Moreover they
appear in the recursive property of Theorem 0.5.9, and so Corollaries 2.4.1, 2.4.2
and 2.4.3 have applications in the computation of generic Kazhdan-Lusztig poly-
nomials (see [23, 24]).

Let us treat first the case W = &(n+1), and let us handle the Boolean elements
in &(n + 1) in terms of n-Boolean sequences (see Section 1.2).

Corollary 2.4.1 Let u,v € &(n+1) be Boolean elements such that l(u,v) > 1.
Then u < v if and only if there exist 1 <l < ly < n such that

Vg = U, if 1 <k <ly,
vp=2andur =1, ifk=1,

vp=2andur =0, ifli <k <ls,
Vg = U, if lo <k <n.

Proof. The proof comes from the analysis of the proof of Theorem 2.2.1.

Fix a reduced expression v of v which is a subword of s;...s,...51 and a
reduced expression w of u which is a subword of v. To simplify, we define
P; to be the Kazhdan-Lusztig polynomial indexed by the elements having as
reduced expressions @ and v with all the letters sy, ..., s; deleted. For example,
if U= s15283548351 and T = s154, then P» = Py, 5,5,55(4)-
Suppose that vy = uy, for 1 <k < Iy, and v;, > u;,. Then P, ,(q) = P,,—1 and
Py, 1 is a Kazhdan-Lusztig polynomial indexed by elements whose difference
of the length is I(u,v). If (v, v 41,1, u,+1) € {(2,2,0,0),(2,2,1,0)}, then
P, »(q) = P, but P, is indexed by elements whose difference of the length is
< I(u,v), and so P, ,(¢) cannot have maximum degree allowed (by hypothesis
l(u,v) > 1 and so P, is not indexed by equal elements if v;, = u;, +1).

Suppose now that:

(Ull)vl1+17"')vn) - (2,2,---,2,Ul2+1:f,*,---,*)

(ull7ull+17"'7un) - (;r307"'707ul2+1:g7*7"'7*)

where z € {1,0} and
Then P, ,(q) = (144
of the length is (I(u,v

~~

,9) #(2,0).

2=l p and P, is indexed by elements whose difference
=2(ly—l1 + 1) + ). If P, ,(q) has degree 1 (I(u,v) — 1)

then P, has degree % (I(u,v) — 1 — 2(ly — I1)). This happens if and only if z = 1

and P, is indexed by equal elements. O

o — =

Example 4 The Kazhdan-Lusztig polynomial indexed by u = s15357548382 and
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U = $183545556575655545352 in &(8) has the highest possible degree. In fact, the
Boolean sequences (1,1,2,1,0,0,1) and (1,1,2,2,2,2,1) associated to v and v
satisfy the requirement of Corollary 2.4.1 with [y =4 and Iy = 6.

The case of (W, S) being generic linear Coxeter system is treated by the following
theorems, whose proofs easily derive from Theorems 2.2.3 and 2.2.4.

Corollary 2.4.2 Under the hypotheses of Theorem 2.2.3, assume l(u,v) > 1.
Then u < v if and only if Y(u) < Y(w) in (m+1). O

Let W be a non-strictly linear Coxeter system, w € W be a Boolean element,
and w be a reduced expression of w which is a subword of the Boolean expres-
sion t1...tp—1tptp—1...t1. We denote by ir 4, (w) and ig, (w) the elements
represented by the expressions we obtain by inserting a factor ¢ to the left
and to the right, respectively, in the appropriate position in w. For instance, if
W = tytstataty, then if, (w) = titatstatoty and ig, (w) = titstatstaty.

Corollary 2.4.3 Under the hypotheses of Theorem 2.2.4, assume l(u,v) > 1.
Denote by u' and v' the elements represented by the expressions we obtain by

deleting all the letters t; in uw and . Then u < v if and only if either
-o(t1) =u(ty) and v’ <v', or

- (@Ot), u(h),ultz),u
w')y iR, (

w € {iL,i(

(t;)) = (2,1,0,0) and there exists
u'),ip; (u'), iy, (u')} such that w < v'. O

2.5 Kazhdan-Lusztig elements

Consider the basis C of the Hecke algebra H associated to a Coxeter system
(W, S) appearing in Theorems 0.5.4. In this section we compute those Kazhdan-
Lusztig elements which are indexed by Boolean elements in any linear Coxeter

.C

Sip*

system. For any expression 7 = s;, ...s;,_, we set C'(7) :=Cj, ..
First we treat the case W = &(n+1). If T is a subword of 51 ... $p—18,8p—1 - - - S1
such that Z(s;) = 2 and Z(sg11) = 1, we denote by C*(Z) the element we
obtain from C(Z) by deleting the factor C

(by Proposition 0.5.5, it is easy to see that it does not matter which one). We

suy1 and one of the two factors Cf,

extend this notation to C¥ (z), for any K C [n], making the same deletions for
every k € K.
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Theorem 2.5.1 Letw € &(n+ 1) be a Boolean element. Fiz a reduced expres-
sion W of w which is a subword of s1...8p...81 and let V = {k € [n] : wy =
2, wg41 = 1}. Then:

Cuw =Y (-)IEICK ().

KCV

Proof. We use the recursive property of Proposition 0.5.5 applied to s.
If wy = 1, and if we assume that the factor s; is on the left in w, then C,, =
Cs,Cs,w because s1 £ sjw.
If wy = 2, necessarily we # 0. Fix a reduced expression Z, which is a subword of
s1w, for any element z in {z < syw : s1 € Dr(z)}. Then Z has a factor s; on the
right and, by Lemma 1.1.1, Z(s2) = 0. Hence, by Corollary 2.4.1, u(z, syw) # 0
if and only if I(z, s;w) = 1, that is to say if and only if soz = syw. This means
that the sum is nonzero if and only if wy = 1, and, assuming that w has only one
factor so on the left, we have Cy, = Cs, Cs,y — Csys,0- Applying the recursive

property in its right version, we get:
Cw = Csl Oslwsl Csl - 05251ws1 Osl -

The result follows by iterating this procedure. [
As a corollary, we have the following nice factorization.

Corollary 2.5.2 Let w € &(n + 1) be a Boolean element. Fiz a reduced ex-
pression W of w which is a subword of $1...5,...51 andlet V' =V +1={k €
[n] : wi—1 = 2,w, = 1}. Then C\, is obtained from C(w) by changing the factor
Csy 10 [Csp — (¢ +q73)7'C,] for all ke V',

Proof. The assertion follows by the multiplication rule of Proposition 0.5.5. O
Example 5 Let w = $1825355845351 € 6(6). Then V = {1,3} and
Cw = C5,Cs,C5,C5;, 05, Cs,Cs, —=Cs, U5 O, O, O, =, Cs, Oy O Cs, +05, O Oy
while V' = {2,4} and we obtain the factorization:

Cu = Oy, [Cay = (% +47%) 7' Ce]Cuy Cag [Cay = (g7 +47#) 71 Ce]Cs C,

Now we treat the case of a strictly linear Coxeter system (W, S). Let t € T (W)
be a Boolean reflection with Boolean expression £ =t ...tn,_1tntn—1 ...t that
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we can assume equal to

SaSa—1---Si+1 SbSb+1 ---5i—15;Si—1 ---Sp+15b Si+1---Sa—15a

by Proposition 1.1.4. Suppose that t; is s;+1. As before, if 7 is a subword of
t1 ... tp—1tptn—1 ...t1 such that T(¢;) = 2 and T has only one factor ¢, k' > k,
that does not commute with &y (tir = tgt1, if & # j, tp = tp, if & = j), we
denote by C*(Z) the element we obtain from C(Z) by deleting the factor Cy,,
and one of the two factors Cy,. We extend this notation to C¥ (%), for any
K C [n], making the same deletions for every k € K. Keeping these notations,

we have the following.

Theorem 2.5.3 Let (W,S = {s1,...,8m}) be a strictly linear Coxeter sys-
tem, w € W, w < t. Fiz a reduced expression w of w which is a subword of
t1.o.tn...t1, and let V! ={k € [n]\ {j} : W(tr) = 2, W(tx4+1) = 1} and

|7 otherwise.

V= { VIU{i} i wl) =2, Wt 1) £2

Then

Cw =Y (-D)IFICK(m).

KCV

Proof. The proof of Theorem 2.5.1 holds replacing s; with #1, except when
t1 = t;. Let us treat this case.
If @(t;) = 1, and if we assume that the factor ¢; is on the left in @, then
Cw = C;Cy; because t; £ tjw.
If w(t;) = 2, necessarily w(t,) = 1. Fix a reduced expression Z, which is a
subword of ¢;w, for any element z in {# < t;w : t; € Dr(z)}. Then Z has a
factor t; on the right and, by Lemma 1.1.1, Z(¢,,) = 0. Hence, by Corollary 2.4.2,
w(z,tjw) # 0 if and only if I(z, t;w) = 1, that is to say if and only if Z is obtain
from t;w by deleting the factor ¢,,. Such expression Z would be reduced only if
W(tn—1) # 2. In this case, we have Cy, = Ct,Cy; — C.. Applying the recursive
property in its right version, we get:

Cw = Ctj Otjwtj Otj - Cztj Otj'

The assertion follows by iteration. O

Theorem 2.5.4 Let (W, S = {s1,...,8m}) be a non-strictly linear Cozxeter sys-
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tem, t € T(W) be a Boolean reflection. Let w € W, w < t be such that s; < w
for alli € [m]. Fiz a Boolean expressiont =ty ...ty ...t1 of the type of Propo-

sition 1.1.5 and a reduced expression W of w which is a subword of t. Then

Ct1 wa Ctu 1f E(tl) = 2,
Cw=4 Cp,Cu, if W has only a factor t1 at the leftmost place,
Cw Cyy, if W has only a factor t, at the rightmost place,

where w' is the element represented by the expression we obtain from W by eras-

ing all the factors t;. Hence C\y can be computed as in Theorem 2.5.3.

Proof. We use the recursive property of Proposition 0.5.5 applied to #;.
Ifw(t;) = 1, and if we assume that the factor ¢; is on the left, then Cy, = C, Ct,
because t; £ tjw.

Let w(t1) = 2. Suppose that ¢; is, together with t,, the only other generator
that does not commute with ¢;. Fix a reduced expression Z, which is a subword
of tyw, for any element z in {z < tyw : t; € Dr(z)}. Necessarily, z has a factor
t1 on the right and, by Lemma 1.1.1, Z(¢;) = 0 for ¢ = 2,j. Hence I(z,t;w) > 1
and pu(z,t;w) # 0 by Corollary 2.4.3. So C,, = Ct, Ct, - Applying the recursive

property of Proposition 0.5.5 in its right version, we get
Cw = Ct1 Ot1 wt1 Ot1 )

and the assertion is proved. O

2.6 Poincaré polynomials

Given v € W, define F,(q) :== >, <, ¢ P,.,(q). Tt is known that, if W is any
Weyl or affine Weyl group, F,(q) is the intersection homology Poincaré polyno-
mial of the Schubert variety indexed by v (see [41]). In this section, we want to
compute these polynomials when W is a linear Coxeter system and v € W is a

Boolean element.

First let us do this computation for W = &(n + 1), where we treat the
Boolean elements in terms of n-Boolean sequences as in Section 1.2. Let us
restrict the domain of ¢ to the interval [e,v]. Given any Boolean sequence
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u= (Ui, ...,up) < ¢(v) in the component-wise partial order, we define

3
~
®
5SS
~
=

I

Hien—1] : v; =2, uy =1, uiy1 # 0};

I~
—~
RS
S
—~

<
~
~—

I

Hien—1] : v; =2, vip1 =2, uiq1 =0}
With these notations,
-1 — 9n(uw,6(v))
¢|[e,u] (U’) 2 )
and, by Theorem 2.2.1,

Fo@)= 3 g1 4 g)ue@)gn(umot),
u<p(v)

We have the following theorem.

Theorem 2.6.1 Let v € &(n + 1) be a Boolean element. Then
Fo(q) = (1+ )L+ g + ¢/,

where f(v) is the number of occurrences of the pattern |2,1| in the sequence

$(v).

Proof. We proceed by induction on I(v). When not specified, a sequence is
meant to be Boolean, and we write v instead of ¢(v) to simplify notation.

We distinguish 2 cases.

1) vy =1.

If we split the sum into two sums according as to whether u; = 0 or u; = 1, we

obtain:

Fv (q) — Z ql(“) (1 + q)b(“ﬂ’) 2”(“7”) + Z ql(u) (1 + q)b(u,v) 2n(u,v)’

u<v[2] u<v:ur=1

where, for all 7 € [n],

. Vj, lf] Z i:
vlil; =
0, otherwise.
Note that if v is Boolean, so is v[i] for all i.
Clearly b(u,v) = b(u,v[2]) and n(u,v) = n(u,v[2]). Sending u to u[2], we obtain
a bijection between the sequences u < v such that u; = 1 and the sequences u <
v[2]. Since I(u) = l(u]2]) + 1, b(u,v) = b(u[2],v[2]) and n(u,v) = n(u]2],v]2]),
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we get:

Z q 1 + q (u v[2])2n(u v[2]) + Z l(u)+1(1 + q)b(u 0[2])2n(u 0[2])
u<v[2] u<v[2]

that is F(q) = (1 + q) F,[21(¢), and we conclude by induction.
2) v = 2.
Splitting the sum, we get:

Fv(Q) — Z ql(u)(l +q)b(u,v)2n(u,v) + Z ql(u)(l + q)b(u,v)2n(u,v)‘

u<v: up#2 u<v : up =2

Being uy # 2, the first sum is over all the sequences u < v', where

/ vj, ifj#1,
J 1, ifj=1,

and
b(u,v) = b(u,v") + 1, if vy =2 and us =0,
b(u,v"), otherwise,

(u,0) n(u,v’) +1, ifu; =1 and us #0,
n(u,v) =
n(u,v"), otherwise.

As to the second sum, there is a bijection between the sequences v < v such
that u; = 2 and the sequences u < v’ such that u; = 1 and uy # 0. This
bijection sends u to u' (similar definition as for v'). Clearly I(u) = I(u') + 1
b(u,v) = b(u',v") and n(u,v) =n(u',v").

Then, if vo = 2, combining all these facts we obtain:

F’v (q) = (]_ + q) Z ql(“) (]_ + q)b(“7vr)2n(u’vl)

u<v' : us=0
+92 Z ql(u)(l + q)b(u,v')Qn(u,v')
u<v' : ur=1 u2#0
+ Z ql(u)(l +q)b(u,v')2n(u,v')

u<v' : u1=0 us#0

+q Z ql(u)(l + q)b(u,v')2n(u,v').

u<v' : up=1 u27#0
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By an easy bijection sending u to u[2],

Z ql(u)(l+q)b(u,v')2n(u,v') =q Z ql(u)(l+q)b(u,v')2n(u,v')

u<v' :ur=1: us#0 u<v' : u1=0 uz7#0

and hence we obtain F,(q) = (14+¢)Fy (q) = (14¢)*F,[5), where the last equality
follows by case 1). So we conclude by induction.
On the other hand, if vo = 1, we obtain

Fy(e)=(1+0)Fp—a >, ¢ (1 +g)2nm)

u<v’ : us=0

Now, by case 1), Fy2) = (1 + q)F[3), while

Z ql(u)(l + q)b(u,v')2n(u,v') — Z ql(u)(l + q)b(u,v')2n(u,v')
u<v' : uz=0 u<v’' : u1=0: ux=0
+ Z ql(u)(l + q)b(u7v’)2n(u7v')

u<v' :ui=1: uzx=0

which is equal to Fy3) + qF[3)-
Hence:

Fo(q) = (14 q)*Fom — (g + @) Fo (@) = 1+ )1 + ¢+ ¢°) Fopg),

and we conclude by induction. [

Example 6 Let v € 6(8), v = 51528455565755548352. Then the Boolean se-
quence associated tov is (1,2,1,2,2,1,1), f(v) = 2 and F,(¢q) = (14+¢)'™ 41+
q+q*)*.

The following two theorems treat respectively the case of a strictly and of a

non-strictly linear Coxeter system.

Theorem 2.6.2 Let (W, S ={s1,...,Sm}) be a strictly linear Cozxeter system,
t € W a Boolean reflection and v € W, v < t. Then F,(q) = Fy()(q), where ¢
is as in Lemma 2.2.2 and Fy,)(q) can be computed as in Theorem 2.6.1.

Proof. Clear since 1 : [e,v]w — [e,¥(v)]s(m+1) is an isomorphism of posets
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preserving the length and Py, (q) = Py(u),¢(v)(q) for all u € [e,v]w by Theo-
rem 2.2.3. O

Theorem 2.6.3 Let (W,S = {s1,...,5m}) be a non-strictly linear Coxeter sys-
tem, t € T(W) a Boolean reflection that we can assume such that s; <t for all
i € [m], andv € W, v < t. Fiz a Boolean expression t =ty ...tp_1tptp_1...11
of t of the type shown in Proposition 1.1.5 and a reduced expression U of v which
is a subword of . Then F,(q) = (1 + q)"“F,(q), where v' is the element of
W represented by the expression we obtain from v by deleting all the letters tq

and Fy (q) can be computed as in Theorem 2.6.2.

Proof. Suppose that t; is, together with 5, the only other generator that does
not commute with ¢;, and fix, for any element u < v, an expression @ of u which
is a subword of v. Let us denote by u’ the element represented by the expression
we obtain from @ by deleting all the letters ¢;. We distinguish 2 cases.

1) o(t;) = 1.

If we split the sum into two sums, by Theorem 2.2.4, we obtain:

Fv(q): Z ql(u)Pu’7v’+ Z ql(u)Pum’-

u(t)=1 (t,)=0

Since in the first sum I(u) = I(u') + 1 and since there is a bijection between the

two sets over which we are summing, we get:

Fy(q) = (1+q)Fu(q).

2)T(ty) =2
Splitting the sum, we obtain:

Fv(q) = Z ql(u)Pu,v + Z ql(u)Pu,v + Z ql(u)Pu,v-
w(ty)=2 u(t1)=1 u(t1)=0

After some simplifications by means of Theorem 2.2.4 and of natural maps, the

first sum gets equal to:

Z ql(UI)+2Pu’,v’a
(' (t2),u (t;))#(0,0)
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the second to:

2 Z ql(u’)+1pu’7v’ + (1 + q) Z ql(u’)+1pu’7v’7
(' (t2),u' (£5))#(0,0) (u’ (t2),u' (t;))=(0,0)
(the “2” comes out from the fact that the map is 2 to 1), the third to

Z ql(u’)Pu/m/ + (1 + q) Z ql(u’)Pu/w/ .
(@' (t2),u’ (¢5))#(0,0) (@' (t2),' (t;))=(0,0)

By adding the summands, we finally obtain:
Fv(‘]) = (]- + Q)2F0’7

and the assertion is proved. [

Remark. The polynomials F,(q) computed in this section are all symmetric
and unimodal. For Weyl or affine Weyl groups W, this is a consequence of the
fact that (middle perversity) intersection cohomology satisfies Poincaré duality
and the “Hard Lefschetz Theorem”. So this result is consistent with the idea
that there may be geometric objects associated to any Coxeter group analogous

to Schubert varieties.



Chapter 3

Parabolic R-polynomials and

Kazhdan-Lusztig polynomials

This chapter deals concretely with the computation of the parabolic analogues
of the Kazhdan-Lusztig and R-polynomials for the symmetric group. We give
closed combinatorial product formulae for the parabolic R-polynomials of both
types ¢ and —1, and for the parabolic Kazhdan-Lusztig polynomials of type q.
These formulae are valid in the case that the indexing permutations are Boolean,
and with no restrictions on the parabolic subgroup W;. These parabolic Kazhdan-
Lusztig and R-polynomials turn out to depend on the number of occurrences of
certain sub-tableaux in a fixed tableau associated to the indexing permutations.
Throughout this chapter, we make use of the notion of the maps ¢g(u,v) and

¢r1,(u,v) we introduced in Section 1.2.

3.1 Parabolic R-polynomials

Let u,v € &(n + 1)7, u < v, be two Boolean permutations. In this section
we give a closed combinatorial formula for the parabolic R-polynomials of both
types ¢ and —1 indexed by w and v. In this formula, there are no restrictions
on the subset .J of S.

Let (@, ) be the right Boolean expressions of (u,v) and consider ¢g(u,v).

First we need the following proposition.

Proposition 3.1.1 Suppose that u,v < s182---s,. Then

67
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RJ’q (q) — (l] _ 1)l(u,v)fE(u,v) (l] 11— m)E(u,v)

u,v

where

E(u,v) = |010].

Proof. We proceed by induction on n, the case n = 1 being clear. If v <
$182 -+ Sp—1, then we conclude by induction.

So assume that s, is the rightmost letter of 7 (equivalently assume that v,, = 1;).
Apply 3) of Theorem 0.5.11 to s,. If u, = 1;, then R} (q) = R}2 . (q)
and we conclude by induction. If w, = 0, then s ¢ Dg(u). By Table 1.2,
usn ¢ &(n +1)7 if and only if n € J and u,—; = 0. In this case R;%(q) =
(q—1—2)R}4, (q). Otherwise, us, € &(n + 1)’ and

UV Sy,

R}(q) = (¢ — V)RS, (@) + qRL 6. ().

But us, € vs, because s, < us, and s, £ vs,. So Riz%(q) = (q— I)R;{:‘{)sn (q)
and the assertion follows by induction. O
Note that Proposition 3.1.1, which is stated for the symmetric group, can be

easily generalized to any Coxeter group W.

Now we want to associate to (u,v) the pair of elements we obtain from the
right Boolean expressions (@, v) of (u,v) by deleting all the letters on the right.
Precisely, we define a map 6 : {(z,y) € [e,(l,n+ 1)] x [e,(I,n+ )] : 2 < y} —
{(z,y) € [e,s1--sp]X[e,81 - 8p] : & < y} as follows. Given (z,y) in the range,
we obtain ¢g(8(z,y)) from ¢gr(x,y) by changing all 2] to 14 and all 7] to [0]
In particular, # does not depend on J.

For example, if

X OO0 XOXXXXX
212]2]2|2]1.]1;]2(2]1;
é(z,y) =[010101010[0[L[2]T,T;
then
X 00 XO0XXXXX
1|11, 1] T] O [1,]14]14]1,
ér(0(z,y)) = [010[0[0[0[0L[LI0[L,
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For m > 1, let

Ap(u,v) = |{ieJ:[i+1,i+m—-1]CJ,
(Viy Vit 1y een, Vitm—1) = (2,2, ...,2),
(Wie1, Uiy -ery i) = (13,0, ...,0) and
either i +m ¢ J or (Vixm, Witms+1) = (15,7 0)} +
HigJ:[i+1,i+m—1]CJ,
(Viy Vig1yeen, Vitem—1) = (2,2,...,2),
(Wiy Wir1y -y tirm) = (0,0, ...,0) and

either i + m ¢ J or (Vitm, Uitms1) = (1,7 0)}].

Equivalently,
oo O X oo 00
*]2]2 2] * *]2]2 211, *
Ap(u,v) = [L[0]O 010} + [%[o]0 olo]d] +
X O O O X XO0o 00
2[2[2 2[x]  [2]2]2 PJIRE
Lof0]0 0[0] + (0f0]0 0lo[d]
O

where the columns of type U] are exactly m in the first two tableaux, m — 1 in
the other two.
Furthermore let

©) ©) X X ©) ©)
* [1,]* 1,]* 2] * 2] * 2] 2 *[*
B(u,v) = [Ll0[0] 4 [O1F] + [0} + [O1F] + (L] + [L[2] 4 LIL[A],
©) ©) ©) ©) ©) ©)
* |1 * |1 *|2 *|2 *| 2 *[2
C(u,v) := [010] +|L]0] + |010] + [L10] + |[Of1r] 4 1.1
and finally
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Then the polynomial R;{’j (¢) can be computed through the following product
formula. For notational convenience, here we drop the dependence on (u,v)
so that | := I(u,v), 1(0) := 1(0(u,v)), Ay := An(u,v), B := B(u,v), and
C :=C(u,v).

Theorem 3.1.2 The parabolic R-polynomial R;{:ﬁ(q) 15 equal to

(¢—1)P(g—1—a) MO 2man=BN, ()RS (@), (3.1)
where the polynomial Rg&i ») (q) can be computed using the formula in Proposi-
tion 3.1.1.

Equivalently, R;{:’f} (q) is equal to

(q _ 1)B+l(0)7C(q —1- x)lfl(Q)fz mAmeJrOMu v(Q)- (32)

Proof. Throughout this proof we use Tits’ Word Theorem (Theorem 0.3.6) as

well as Lemma 1.1.2 without explicit mention.

Recall that (u,v) are the right Boolean expressions of (u,v). First of all,

the equivalence of 3.1 and 3.2 follows by Proposition 3.1.1. In fact R‘;Ez (q)

w,v)
has only factors (¢ —1 —z) and (¢ — 1), and C(u,v) counts the sub-tableaux of
®)
% ]-l
ér(u,v) that give rise to sub-tableaux of type [010]in ¢g(A(u,v)).

Let us prove 3.1 by induction on I(v). If v < s182 + - - 5, we are done because
O(u,v) = (u,v), B(u,v) =0 and Ap,(u,v) =0 for all m > 1.
So we may assume that v £ s182---5,. Let s; be the letter at the rightmost
place in T and use the recursive property of Theorem 0.5.11 applied to s;. Case
by case, we investigate the relationship between the polynomial R,{ﬁ)(q) and the
polynomial Ri}fv, (¢), where v' and v' are the elements represented by @ and
v with the letters s; at the rightmost place (if any) deleted. So v' = vs; and
u' =u or us;.
Let us collect the cases that are analogous.
If both © and u have a letter s; at the rightmost place, then Rgzﬁ(q) = Ri}fv, (q),
and we conclude by induction.
Using Table 1.2, it is not hard to check that u < us; € W’ and us; £ vs;
precisely in the cases given in the following table, where empty space stands for

any entry.
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S I I PR (PR N
Uj—1 Uj Uj41 Uj4-2
1,
es
1 0 0 v
1y
es
0o || #0 Y
1,
no
0
2
0 £0
2
no
1
2
es
1, P Y
2
es
1 1 £0 y
In all these cases we have R;%(q) = (q— 1)Ri’,fv, (q), while B(u,v) = B(u',v")+1

and A, (u,v) = A, (v, 0") for all m > 1. Hence the result follows by induction.

Similarly, v < us; ¢ W precisely in the cases given in the following table

R I R = ol P Py
Ui—1 g Uit1 Uit2
1,
0 0 0 yes
2
0 0 0 yes
2
L L no yes
2
1 . 0 no yes
2
1l 1l 1l yes yes
2
1 L L 0 yes yes
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where R (q) = (¢ —1— 2)R" (q), while B(u,v) = B(u/,v") and A,,(u,v) =

u v’

Ap(u',v") for all m > 1. So the result follows by induction.

By Tablel.2, we have that v < us; € WY and us; < vs; exactly in the

following two cases.

Case i) Forsomem > 1, (0, Vit1, ooy Vitm—1) = (2,2, .., 2), (Wim1, Wiy vey i)
(1;,0,...,0), [i,i+m—1] C J and either i+m ¢ Jor, ifi+m € J, (Vitm, Yitm+1) #
(2,0).

First of all, let us treat the case m = 1. By Theorem 0.5.11 we have

As I(vs;) = 1(v) — 1, we can use the induction hypothesis and find

(q - I)RQ{’sz;vsi (Q)a if ¢ +1 ¢ J,

R (q) — (q - 1)R1{7s€7vsi (q)7 ifi+1€Jand vip1 =1, ujpe #0,
wos; (@—1—2)RJE oy (@), ifi+1€Jand v € {2,1;),

(¢—1—-2)R} .. (), ifi+1€Jand (vir1,uir2) = (1,0),

and hence
(q2q_—q1+1) Jeq), ifi+lel,
27 . .

RZ’%(Q) = (ZI q7ql+1) 'L{ff)si (q) lf 1+ 1 S J and Vig1 = 17,, Uit 7é 0,

q—1—-2)R)% (q), ifi+1eJandvi €{2,1},
q Z,(q), ifi+1€Jand (Ui+1,Ui+2) = (1,-,0),

(note that (g —1) + = = (¢ —1—2) for z € {-1,q}).
Now, for all m > 1, we want to investigate the relationship between Rizﬁ(q)
and Riyts:sivm_r (q). A priori, Riﬁ(q)/R,{’f}si...sHm_l(q) could be function of

all the entries in ¢r(u,v) and we abuse notation by setting

R} (q)

Ri:f)si"'si+m—1 (Q) -

f(m) =

We claim that f(m) only depends on m, vitm, tirma1 and on whether i +m
is in J or not. We prove the claim by induction on m. The claim is true for
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m = 1 since we have just proved that

(%) ifi+1¢.J,

(‘12*‘”1) o ifi+leJand vy =1, uiss # 0,
—1—2z), ifi+1€Jand vy €{2,1;},
—1—2x), ifi+1€eJand (viz1,ui42) = (1,,0).

(3.3)

If m > 1, by Theorem 0.5.11,
Ryi(e) = (a— DRy, (@) +aRy 6, (0),

by the induction hypothesis on 3.1

R’l{:isi (q) = (q - 1 - x)milRI{’,’lm)Spnsi_*_m_l (q)7

and by the induction hypothesis on the claim we can write

R;{’sf,vsi (q) = f(’ITL - 1)R1{7s€,vsi---si+m,1 (q)

By induction hypothesis on 3.1, R,‘{’,f,si...sim_l (q) = (q—l—x)R;{’sf,vsi...sHm_l (q),

and hence f(m) satisfies the following recursive property

q

fm) = (@-1(@-1-2)"""+ —1-z

fim—=1) (3.4)

for any choice of v;4m, Uirm+1 and J. This prove the claim.
Now we can conclude that

(co)mH!

q_i+1+(q—1—x)m, ifi+mé¢J,
Fm) = 2 (g-1—2)™, ifi+me Jand viem = Ly, Uigmes 70,
(g—1—-2)", ifi+m e Jand vy, € {2,1;},
(g—1—x)™, ifi+m e Jand (Vitm, Uirma1) = (1,,0).

In fact, for € {—1,z}, this function verifies both the recursive property of 3.4
and the initial conditions of 3.3.

Hence the result follows by induction.

Case ii) For some m > 1, (Ui, Vi1, oy Vitm—1) = (2,2, ..., 2), (Ui, Ui 1y oo, Ujpm) =
0,0,...,0),i ¢ J,[i+1,i+m —1] C J and either i + m ¢ Jor, if i + m € J,
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(Vitm Wirm+1) 7 (2,0).
As in Case i), we can show by induction that Rizﬁ(q)/Riﬁsi...sHm_l(q) only
depends on m, Vitm, Uirm+1 and on whether ¢ +m is in J or not. We abuse

notation by setting
o(m) = Ry ()
Rizﬁsi"'si+m—1 (Q)

By Theorem 0.5.11 and the induction hypothesis on 3.1, we have

RI(q) = (q— DRy (0) +aRyE . (a)
(g=D(g—1—a)"'RJ5. ... (2
+ qf(m - 1)R1{’szi,vsi~~~si+m_1 (q)

where f(m) is as above. Now, by induction hypothesis on 3.1,

Ry (@) = (¢ —1—2)R}] (a)

U,US8; - Sitm—1 US; VS " Sitm—1

and hence we have

90m) = (g =D = 1= 2)" "+ - f(m — 1), (3.5)

for any choice of Vi1, Uitm+1 and J.
We claim that g(m) = f(m) for all m. By 3.4 and 3.5 it suffices to prove that

g(1) = f(1).

So assume m = 1. By Theorem 0.5.11, we have
Ryy(e) = (a— DRy, (@) +aRy 4, (0)

and by induction we have

BRI (q) = (¢ - VRJE .. (q), ifi+1¢eJand vy, =1,, ujps #0,
o (q—1—=2)R}E .. (q), ifi+1€Jandviy € {21},
(q -1- x)R;{ﬁé,vsi (Q)a ifi+1€ Jand (Ui+1aui+2) = (17‘70)7

obtaining the same values of Case i). So g(1) = f(1) and g(m) = f(m) for all
m > 1.

This concludes the induction step and hence the proof. [
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Example 7 Let us compute the R-polynomial R;{ﬁ) (q) of S12, where the Boolean

permutations v and u, and the subset J of S are as follows:

U = 515253545556585951151059585756545352
U = 815651157
= {2,3,4,9,10}

By Table 1.2, the permutations u and v are in S{,. As the given expressions

are right Boolean, we have

X000 XXXXO0O0 X
1,1212[2(1]2[1,{2([21,|1;
¢r(u,v) = [L10]0]0]0[L[T,]0]0]0[1;
and
XO0OO0OOXXXXOO0X
1111 14]1;{ 0 ]1,{1,{ 0|1,
dr(0(u,v)) =110[0]0]0]L,{0]0]0]O[1;
Now l(u,v) = 13, (8(u,v)) = 6 and
Ao(ww) = {8} =1,
As(u,v) = {2} =1,
Ap(u,v) = 0 for allm ¢ {2,3}.
Hence
—)3 )
Mu,w(q) = ) +(q—1—x)2]{ ) +(q—1—x)3
q—1 -1
Furthermore
B(u,v) = 2
with the contributions exactly given by
X

oo

= *
I
—
=
*
I
—
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If we want to use 3.1, we have to compute Rgz’; v) (¢). By Proposition 3.1.1,

RS (@) =(@—1)*(¢—1-2),

since E(6(u,v)) = 3.

If we want to use 3.2, we have to compute C(u,v) and we obtain
C(u,v) =3

with the contributions exactly given by

*
oSN |(O

Il
b

Note that E(8(u,v)) = C(u,v). This is not by chance.

Using one of the two equivalent formulae 8.1 and 3.2 we obtain

RE@ = (0= 1010 S -1y [E2 - 1-0p).

g—1 qg—1
that is
RIe(q) = {q3(q—1)3(q3—q2+1)(q4—q3+1), z:fx:—l.
’ (@=1*@* —a+1)(¢" —q+1), if v =q.
Remarks.

- Theorem 3.1.2, as stated, fails for the left Boolean expressions.

- The result in Theorem 3.1.2 for J = ) (ordinary R-polynomials) implies
Theorem 2.1.1.

3.2 Parabolic Kazhdan-Lusztig polynomials

Let u,v € &(n +1)7, u < v, be two Boolean permutations. In this section we
give a closed combinatorial formula for the parabolic Kazhdan-Lusztig polyno-
mials of type ¢ indexed by u and v. In this formula, there are no restrictions on
the subset J of S.
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Let (@, 7) be the left Boolean expressions of (u,v) and consider ¢z, (u,v). We

start with the following proposition.

Proposition 3.2.1 Suppose that u,v < s182---s,. Then

0, if E(u,v) >0,

1, otherwise.

Pli(q) = {

®)
% ]-l
where E(u,v) = | 010

| as in Proposition 3.1.1.

Proof. We proceed by induction on n, the case n = 1 being clear. If v <
$189 -+ +Sp_1, then we conclude by induction. So we may assume that s, is the
rightmost letter of T, or, equivalently, we may assume that v, = 1;. Let us apply
Theorem 0.5.14 to s,,. As s, € vsp, clearly {w < vs, : ws, < w} = @, and
hence the sum on the right hand side of the recursive formula of Theorem 0.5.14
is always empty.

If u, = 1;, then clearly us, < u, and u £ vs,, since s, < u but s, € vs,. It
follows that P = Pl .. (q). So we can conclude by induction.

Suppose that u, = 0. In this case u < us, £ vs, since s, < us, but s, € vs,.
If u, 1 = 0 and n € J, then, by Table 1.2, us,, ¢ W and hence P =0 as
desired. Otherwise, us,, € W7/ and P = P;];gsn (¢). So the assertion follows by
induction. O

Note that Proposition 3.2.1 can be generalized to any Coxeter group W.

To simplify notation, we define a map v : {(z,y) € [e,(1,n+ 1)] x [e, (1,n +
D]:z <y} - {(z,y) € [e,81---5n] X [e,81---8n] : ¢ < y} as follows. Given
(z,y) in the range, we obtain ¢r,(y(z,y)) from ¢r,(z,y) by the following steps:

% O % O
2|2 1,2
1. change the leftmost sub-tableau of type (010] to a sub-tableau of type (1[0
(where * can be either O or x);
*x O
2|2
2. if there are still sub-tableaux of type L010] go to step (1). Otherwise,

change all L2] to 14 and all 2] to [0]
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For example, suppose that

XOOXOXXXXX

==
NL
[a\ ][]
==
=
— |
[9\ | (e}
N O
[\ | e}
N O
N
Il
—~
=
8
~—
~
<

After the following intermediate steps

XOOXOXXXXX

— =
|5
|
— =
o
~N|o
NI=)
~|o
NI=)
~N|o

XOOXOXXXXX

— =
N
e
— =
o
~|o
o
~|o
o
— =

XOOXOXXXXX

— =
™5
e
— =
o
~|o
o
~|o
— =
— =

XOOXOXXXXX

ll
— =

~
N
[aN l[a\]
==
— =
=~
— |
[a\] [ew]
==
— =
[a\] [ew]
==
— =
==
— =

X OO XOXXXXX

zz
— [
— |
==
— [
==
— [—
[en] {an)
EE
==
— [—
EE
==
— [—
~=
— [

we obtain

X OO XOXXXXX

~[ ~]
i [—
— |
~[ ~|
i [—
~[ =]
— [—
o] [an]
— |
~[ ~|
i [—
— |
~[ ~|
i [—
~[ =]
— [—
—~
—~
SN
8
~—
o
~—
~
<

(5182545758510, 5152835455575859510)-

and so y(z,y)
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Furthermore, we let

®) X
2|2 2(2
a(u,v) = | 0!7 b(u,v) = | 0!7
and
®) ®) ®) ®) ®) ®) ®)
I * |1, % *[2]* AR *[1; *[2 *x[9
c(u,y):!1l11!+!000!+!000!+!0 0] + O 0!+!01r!+!1r1r!,

We drop the (u,v) when no confusion arises.
Then the polynomial Pqug(q) can be computed through the following product

formula.

Theorem 3.2.2 The parabolic Kazhdan-Lusztig polynomial Pi’g(q) satisfies

O O O
2| x * |1, % IPIE
Pl =14 0, if {01 + (01010 + (0100} > 0 (3.6)
(14 q)"P%% (q), otherwise,

v(u,v)

q

) (q) can be computed as in Proposition 3.2.1.

where the polynomial P;Y](’

Equivalently,

P.Lq( ) _ 0: 1](0 > 0, (3 7)
o= “(1+q)®, otherwise. :

Proof. In this proof we use both Tits’ Word Theorem (Theorem 0.3.6) and
Lemma 1.1.2 without explicit mention.

Recall that (@, ) are the left Boolean expressions of (u, v). It is clear that 3.7

is equivalent to 3.6 since c¢(u,v) is the number of the sub-tableaux nullifying
P;l:7(¢) in 3.6 or nullifying ij(’z’v) (q) by Proposition 3.2.1.
Let us prove 3.6 by induction on [(v). If v < s189---5,, we are done because
Y(u,v) = (u,v), a(u,v) = 0 and b(u,v) = 0. So assume v £ s182 - s,. Let s; be
the letter at the rightmost place in . The recursive property of Theorem 0.5.14
applied to s; gives

~ I(v)=1(w)
Pli(q) = P- > p(w,vsi)g = Pli(q).  (38)
wE[u,vs;]s: siEDr(w)

Let us proceed case by case.
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Suppose first that ¢y, (u,v) contains one of the following two tableaux:

o
x[2[2] --- [2]f]*
Llhl0] ---_JO]O]9
X

2|2 20 f[*
h{0 0019

where, in both cases, h € {1;,0}, (f,g) # (2,0), the column 2] is the i-th, and

the column % is the (i +m)-th. First of all, by Corollary 0.5.15, we can assume
h =0 as s; € Dr(v) and u(s;+1) = 0. We claim that, if m > 1, then

Pli(q) = M1+ ¢ 1APDY (g)

where A ={k ei,i+m—-2]:k+1€ J}, v = 08841 Sitm—2 and u' is
represented by the expression we obtain by inserting s to the left in @ for all
k € A. Let us prove the claim. For convenience, we denote by 7s; the expression
we obtain from T by deleting the letter s; at the rightmost place. The sum in
(3.8) gives no contribution. In fact, let @ be a reduced expression of an element
w € {w < wvs; : ws; < w} which is a subword of Ts;. Then w has a factor s; on
the left and no factors s;41. Hence s;41 € Dg(vs;) \ Dr(w) and p(w,vs;) =0
by Corollary 0.5.15. Let us compute the polynomial P. We have

. Pl (q), ifirled,
P =Pl (a) + P, (q) = { T s (Jq) per
(q+ D)PI(a), ifi+1¢ .

In fact, if i + 1 € J, then s;11 € Dg(vs;) and u < us;y1 ¢ W7. So, in this case,
Pli.(q) =0. If i +1 ¢ J, by the induction hypothesis P21 (q) = P;"%, (q).
The claim follows by iterating this procedure.

It remains to consider the case m = 1. Let w be a reduced expression of
an element w € {w < vs; : ws; < w} which is a subword of vs;. Then w
has a factor s; on the left and no factors s;11. In particular, w(s;) = 1 and
w(s;+1) = 0. Hence, by Corollary 2.4.1, we have that p(w,vs;) can be non-zero
only if I(w,vs;) = 1 (f cannot be 0 otherwise ¥ would not be reduced). Let us
distinguish the three cases: f =2, f=1,, f =1;.

If f =2, the sum gives no contribution because I(w,vs;) > 1 for all possible w.
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By induction hypothesis,

Pl (q):{o, ifi+1€lJ,
Pl . (q), ifi+1¢J.

and then

P { aPl .. (a), ifi+1elJ,
(¢ +DPLY, (), ifi+1¢J,

as in the case m > 1.
If f =1, we have

1, if w=wvs;si+1,

0, otherwise,

(w, vs;) = {
and the sum contribute exactly with one summand. Hence
PlU(q) = qPL! (@) + Pl (@) — aPlL ., (0)-

By induction P%? . (q) = P;4 (¢), thus

US;,US; U, VS 8541

Pli(q) = B, ()

u,US8;
If f=1;, we get that u(w,vs;) can be non-zero only if w is the element rep-
resented by the expression we obtain from vs; by deleting the factor s;;1. We

have to see if this element w is in W+ or not. By Table 1.2, w is not in W if
and only if i + 2 € J and w;y2 € {2,1;}. But wiy2 = viy2. So

PJ,CI( ) — qP{L].;g,vsi (q) + Puj,’gsi (Q)a if 4 +2 € J and Viy2 = {2, ]-l}
w4 = aPh? .. (q) + P2 (q) — qPli(q), otherwise.

us;,vs; U,v8;

By induction hypothesis, P;;¢ . (q) = P4, (q) = P;"%(q). Hence

US;,US; UUS;

prag = { @FDPH @, ifi+2 €T andvis € {2, 1)
u,v P24 (q), otherwise.

UUS;

We claim that Pu‘];g(q) = PJ4_(q) in any case, since, if i +2 € J and v;,o €

u,8;

{2,1;}, then P4 (q) = 0. In fact, the restrictions on v;1» imply g € {2,1;,0},

u,v8;

and i +2 € J forces g = 0 since u € W7. Hence by induction hypothesis,
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Pt (q) = 0 since columns i-th and (i + 1)-th of ¢ (u,vs;) form either a
©) ©)

2|2 Z1L

tableau of type [010] or a tableau of type 010

So the assertion follows by induction.

Now suppose that ¢, (u,v) contains one of the following tableaux:

o
o0 oo
o

where the last column is the (i + 1)-th. Clearly s; € Dgr(v) \ Dr(u). But
us; ¢ W7, and then P;(q) = 0.

Finally, in all the remaining cases, we have
J,
P{L],,g(q) = Pu’,qv’ (Q)a

where v’ = vs; and u' is the element represented by the expression we obtain
from w by deleting the letter s; at the rightmostplace, if any. The proof of this
fact uses the same technique as above, but is much simpler, and it is left to the
reader.

This concludes the induction step and we are done. [J

Example 8 Let us compute the Kazhdan-Lusztig polynomial Pquf(q) of Sto,

where the Boolean permutations v and u, and the subset J of S are as follows:

V = 8185253545557585958575655545251
= 51545956

{2,8).

By Table 1.2, the permutations u and v are in Si,. As the given expressions
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are left Boolean, we have

X

= =
=
OINo| X
=11\ le}
oy Ry

X

DX
O X

po| X
oIN(O
ol X
fey

=]
~

=

¢L(u7 U) =

Therefore
a(u,v) =2,

b(u,v) =1,
c(u,v) =0,

and using 3.7 we obtain
Pla) = ¢’(1+q).

Remarks.
- Theorem 3.2.2, as stated, fails for the right Boolean expressions.

- The result in Theorem 3.2.2 for J = ) (ordinary Kazhdan-Lusztig poly-

nomials) implies Theorem 2.2.1.

We explicitly state the following easy consequence of Theorem 3.2.2. This

proves, in the case of Boolean permutations, a conjecture of Brenti ([18]).

Corollary 3.2.3 Let I C.J. Then
Pli(q) < PLi(q)
in the coefficient-wise comparison.

Proof. Straightforward by the analisys of (3.6). O
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Chapter 4

Proof of Lusztig conjecture

This Chapter is devoted to the proof of Lusztig’s conjecture on the combina-
torial invariance of Kazhdan-Lusztig polynomials for lower Bruhat intervals in
any Coxeter group. This follows by proving that special matchings lead to a
poset theoretic recursion for computing R-polynomials (Corollary 4.4.8). Corol-
lary 4.4.8 is reformulated in a very compact way in Section 5 (Theorem 4.5.2) by
introducing a combinatorial version of the Hecke algebra (naturally associated
to the special matchings) which acts on the classical Hecke algebra.

4.1 Combinatorial properties of Bruhat intervals

In this section we prove some combinatorial properties of Bruhat order on a

Coxeter group which are needed in the sequel.

The next result can be proved in a way exactly analogous to Lemma 3.1 of
[32], and its proof is therefore omitted. We refer the reader to [39] for a detailed
treatment of roots systems.

Lemma 4.1.1 Let (W, S) be a Cozxeter system and t1,...,tap, €T (n € P).

- If t1ty = t3ts # e then the corresponding positive roots au,, iy, Qty, Q4,4 aTE

coplanar.
- If t1,ta,...,tn are such that the corresponding positive roots oy, ,Q,,. . .04,
are coplanar then the reflection subgroup (t1,t2,...,t,) is a dihedral re-

flection subgroup.

87
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Theorem 4.1.2 Let (W,S) be a Coxeter system and a,b € W be such that

either

v
w

Hw e W :w<a,w<1b} (4.1)
or

HweW ::wba,w> b}

V
w
—
=
[\
~

Then a = b.

Proof. We prove the assertion for (4.1), the proof for (4.2) being entirely
similar.

Suppose that a # band let z,y,2z € {w € W : w<a,w<b}. Let t1,...,t6 € T
be such that at; = x, at3 =y, ats = z, bty = x, bty =y, btg = z. Then at ts =
atgty = atstg = b so t1ty = t3ty = tstg # e. This, by Lemma 4.1.1, implies that
W' = (t1,...,ts) is a dihedral reflection subgroup. Clearly, a,b,z,y,z € aW'.
But, by Lemma 1.4 of [32], aW' with the partial order induced by the Bruhat
ordering of W is poset-isomorphic to W' (considered as an abstract Coxeter
system). This is a contradiction since W' is a dihedral Coxeter system, and
z,y, z are incomparable. Hence a = b, as desired. O

Note that Theorem 4.1.2 immediately implies Proposition 3.1 of [17]. The
following result, though already known, turns out to be a direct consequence of
Theorem 4.1.2. We call an interval [u,v] in a poset P dihedral if it is isomorphic
to a finite dihedral group ordered by Bruhat order.

Corollary 4.1.3 Let (W, S) be a Coxeter system, and u, v € W. Suppose that
{z € [u,v] : I(z) =1(v) — 1}| = 2. Then [u,v] is a dihedral interval.

Proof. It is well known that, for all z,y € W such that y < z and I(z)—I(y) = 2,
[y, x] is a Boolean algebra of rank 2. Using this and Theorem 4.1.2, it is easy
to prove, by induction on 7, that |[{w € [u,v] : l(w) = I(v) —i}| = 2, for all
i € [l(v) —l(u) — 1], as desired. O

4.2 Pairs of special matchings

The following result follows directly from [17, Lemma 4.1].
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M(z) N(z)
NM(x) MN(z)
MNM (z) NMN(z)

Figure 4.1: The orbits (M, N)(u) are dihedral intervals

Lemma 4.2.1 Let P be a graded poset, M be a special matching of P, and
u,v € P be such that M(v) <v and M(u) > u. Then M restricts to a special

matching of [u,v].

Since a matching is an application from the set of vertices of a graph to itself,
we can compose special matchings as functions. Given two special matchings,
M and N, we wish to look at the structure of the orbits of (M, N), the group
generated by M and N. For z € P we denote by (M, N)(z) the orbit of 2 under
the action of (M, N).

Lemma 4.2.2 Let P be a finite graded poset, and M and N be two special
matchings of P. Then the orbit (M, N)(u) of any u € P is a dihedral interval.

Proof. Since P is finite, the orbit (M, N)(u) is also finite. Therefore there
exists x € (M,N)(u) such that M(z) <z and N(z) <z. If M(z) = N(x)
then (M, N)(u) = {z, M (z)} and we are done. Else, by the definition of a spe-
cial matching we have that N (M (z)) < M(z), N(M(z)) < N(z), M(N(z)) <
N(z), and M(N(z)) < M(z). If M(N(z)) = N(M(z)) then (M,N)(u) =
{z,N(z), M(x), N(M(z))} and we are done. Otherwise we conclude, simi-
larly, that MNM (z) ANM(x), MNM(x) < MN(z), NMN(z) <« MN(z), and
NMN(z) < NM(x) (see Figure 4.1).

If MNM(z) = NMN(z) then we are done, else we continue in this way.
Since (M, N)(u) is finite there exists | € P such that MNM .. (z) = NMN .. (z)

l l
and the result follows. O

The following is the main result of this section, and one of the key ingredients
in the proof of our main result. We say that a graded poset P avoids K3 if
there are no elements ai,as, az, bi,bz € P, all distinct, such that either a; <1 b;
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foralli € [3],j € [2] or a; > b; for all i € [3], j € [2]. So, for example, a Coxeter
group under Bruhat order avoids K3 » by Theorem 4.1.2.

Proposition 4.2.3 Let P be a graded poset that avoids K3 >, v € P, and M and
N be two special matchings of P such that M (v) # N(v). Letv' ¢ {M(v), N(v)}
and suppose that either

i) M(v) <v, N(v) <v and v' Qv, or
i) M(v)>v, N(v)>v and v' > v.

Then
(M, N)(v)| = (M, N)(@)].

Proof. We prove the statement only in case i), case ii) following by considering
the dual poset P*. Suppose that [(M, N)(v)| = 2n, |(M,N)(v')] = 2m. Note
that, since v' & {M(v),N(v)}, (M,N)(w) N {M,N)(v') = @. Therefore, no
element of (M, N)(v) is matched by either M or N to an element of (M, N)(v').
This, by the definition of a special matching, and a simple induction on k,

implies that

MNM---(v'y QMNM---(v) , MNM- -(t') QNMN ---()),
S——— S——— S——— S——
k k k k—1

and similarly that

NMN---(v')SNMN---(v) , NMN---(') SMNM---(v'),
— —_— — —
k k k k—1

for all k € [n]. Therefore, m > n. If m > n, then MNM ---(v) = NMN ---(v),
S———— SN——

n n
while MNM ---(v') # NMN ---(v"), and this contradicts the fact that P avoids
S—— S———

n

n
K 5 (see Figure 4.2). O

We now restrict our attention to the case where P is a lower Bruhat interval
of a Coxeter group W, i.e. an interval of the form [e,v], with v € W. In this
case we often refer to a special matching of [e,v] as a special matching of v.

Lemma 4.2.4 Let u,v € W, u < v and M and N be two special matchings of
v. Suppose that (M, N)(u)| > 2. Then there exists a unique mazimal dihedral
interval I containing (M, N)(u). Furthermore I is a union of orbits of (M, N).
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Figure 4.2: The case n =3 and m > n

Proof. The result follows easily by Theorem 4.1.2, Lemma 4.2.2 and the defi-
nition of a special matching. O

Lemma 4.2.5 Let u,v € W, u <wv and M and N be two special matchings of
v. If |(M,N)(u)| = 2m > 2, then there exists u' and a dihedral interval I such
that e, M(e),N(e) € I, |(M,N)(u')| = 2m and (M,N)(u') C I. In particular,
if M(e) # N(e), then Wipre),n(e)}y contains an orbit of cardinality 2m.

Proof. Without loss of generality we may assume that M (u), N(u) <u. We
claim that we can find a sequence u = w3 >ug>- - -I>uy such that M(u;), N(u;)<
ug, (M, N)(u;)| = 2m for all i € [k], and [e, ug] is a dihedral interval. In fact if
{z€e,u]: z<qu} = {M(u), N(u)} then we are done. Otherwise let us € {z €
le,u] : z<tu} \ {M(u), N(u)}. Then, by Proposition 4.2.3, |(M, N)(uz)| = 2m
and M (uz) <Quz, N(uz) <wuz. If {z € [e,uz] : 2z Qua} = {M(us2), N(uz)} then
our claim is proved. Otherwise let ug € {z € [e,us] : 2z Qua} \ {M (u2), N(u2)}
and continue as above. This proves our claim. Let I be the maximal dihedral
interval containing (M, N)(uy). Since [e,u] is dihedral we have (M, N)(uy) C
[e,ur] C I and by Lemma 4.2.4 I is union of orbits of (M, N). In particular
M(e), N(e) € I and the proof is complete. O
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4.3 Groups of rank 3

If JC S and we W we let Wy(w) := Wy Nle, w.

For z,y € S we denote by ---zyz (respectively zyz---) a word given by
alternating x and y that ends (respectively begins) with z. Inside any single
proof, if the length of such a word is not specified, it is assumed to be arbitrary
but fixed.

A complete matching of an interval [e, w] is called a multiplication matching
if there exists s € S such that either M = A\; or M = p;.

The expressions considered for an element of a Coxeter group are always

assumed to be reduced.

Lemma 4.3.1 Letu,w € W, u < w and M be a special matching of w. Suppose
that u does not belong to any dihedral interval containing e and M (e), and that
M (u) > u. Then there exist two distinct elements u1 and vz such that u; < u
and M (u;) > u;, fori=1,2.

Proof. By Lemma 4.2.1, given an element v with v > M (v), M restricts to a
special matching of [e,v]. In particular M (e) < v. Hence, if M(e) £ u, then
M (z) > x for all x € [e,u], and the assertion is proved.

So we may assume that M (e) < u. Hence the interval [e, u] is not dihedral and,
in particular, [e, M (u)] has at least two coatoms distinct from wu, say z; and
x2. Then the elements u; = M (xz;), for i = 1,2, satisfy the conditions of the

statement. [

Lemma 4.3.2 Letu,w € W, u < w and M be a special matching of w. Suppose
that for all © < w such that x belongs to a dihedral interval containing e and
M(e) we have M(z) = xM(e). Then M(u) = uM (e).

Proof. We proceed by induction on I(u) the statement being trivial if I(u) =
0. We may assume M (u) I> u, otherwise the statement follows by induction.
Furthermore, we may clearly assume that v does not belong to a dihedral interval
containing e and M (e). Hence, by Lemma 4.3.1, there exist two distinct elements
uy and we such that u; < v and M (u;) > u;, for i = 1,2. By our induction
hypothesis M (u;) = u; M (e), for i = 1,2. Therefore uM (e) covers u, M (uy) and
M (u2) and, by the definition of a special matching, M (u) also covers u, M (u;)
and M (us). Hence M (u) = uM (e) by Theorem 4.1.2. O

Proposition 4.3.3 Let w € W and M be a special matching of w. Then for
all J C S such that M(e) € J, M stabilizes Wy(w).
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tst str M(sr)

ts rs

tr

Figure 4.3: Proof of Lemma 4.3.4.

Proof. We prove that v € Wjy(w) implies M(u) € Wy(w) by induction on
I(u), this being trivial if [(u) = 0. We may clearly assume that M (u) > u. Let
x A M(u), x #u. Then M(z) <u and by our induction hypothesis z € W;(w).
Hence all the coatoms of M (u) are in Wy (w), so M (u) € Wy(w). O

From now on we assume that (W,S) is a Coxeter system of rank 3. We
let S := {s,r,t}, w € W, M be a special matching of w and we assume that
M(e) = s.

Lemma 4.3.4 Ifrs,sr,ts,st < w, rs # sr, st # ts, M(t) = ts and M (r) = rs,
then M (st) = sts and M (sr) = srs.

Proof. By symmetry it suffices to show that M (st) = sts.

By definition of a special matching M (st) > st and M (st) > ts, so M(st) €
{sts,tst}. Similarly, M(sr) € {srs,rsr}. Suppose M(st) = tst. If str < w
then (see Figure 4.3) M (str) > tst, M (sr). But there are no elements covering
both tst and M(sr), so str £ w. Similarly srt £ w. Now consider a reduced
expression for w. Then tst and either srs or rsr are both subexpressions of it
and it is easy to see that these conditions force that either str or srt is also a

subexpression, contradicting the fact that str £ w and srt £ w. O
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Lemma 4.3.5 Suppose rs, sr,ts,st < w, M(t) =ts and M(r) =rs, but M #
ps- Let xo be a minimal element such that M (zo) # xos. By Lemma 4.3.2, we
necessarily have xo € Wy, 3 (w)UWy, oy (w) and we assume that xo € Wi, 4 (w).
Let u be such that zo <u < w and u ¢ Wy, pn(w). Then u € {xor,rz0}.

Furthermore, if sr # rs, then u = rzg.

Proof. Clearly, s ¢ Dr(zo), and M (xo) > xo. Let 29 = afa - - tst where o = s
—_———

if k is even, a =t if k is odd and {a, 8} = {s,t}. Since zg # ]Z we conclude that
st # ts. Hence, by Lemma 4.3.4, M (sr) = srs. Let u be as in the statement
and assume u ¢ {zor,rzo} if st = rs and u # rxg if sr # rs. So u is obtained
by inserting a letter r in the unique reduced expression of xg.

Let y := au. Then y < u, hence the elements in Wy, ;1 (y) are all strictly
smaller than xo. Furthermore, the elements in Wy, ,1(y) are smaller than, or
equal to, srs. Hence, by Lemma 4.3.2, M(y) = ys. Since xy and y are both
covered by u, M(u) > M(zo) = paB---tst # afa---sts and M(u) > M(y).

k+1 e
Then it is not difficult to see that these two conditions force M (u) = yst which

is a contradiction since, as one can verify, yst ¥ u. O

Lemma 4.3.6 Suppose that M(t) = ts # st and M(r) = sr # rs. Then
rst £ w. Furthermore, if rt # tr, then rt £ w.

Proof. Suppose rt < w. Then, by the definition of special matching, M (rt)>rt,
M (rt)r>ts and M (rt) > sr (see Figure 4.4). If rt # tr there are no such elements
and this proves the second part of the statement. If r¢t = t¢r then necessarily
M(rt) = tsr. If rst < w then M (rst) would cover both tsr and rst and there
are clearly no such elements. O

In the following results we distinguish three cases:

1. M(t) = ts, M(r) = rs # rs and M # ps. We let o be a minimal
element such that M (z) # =os, we assume that zo € W, ¢ (w) and we

let affa---tst be its unique reduced expression.

2. M(t) =ts, M(r) =rs = sr and M # ps. We let 2o be the minimal ele-
ment such that M (zg) # zos and we let afa---tst be its unique reduced

expression.

3. M(t) =ts # st and M(r) = sr # rs.
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tsr rst

ts ST

e

Figure 4.4: Proof of Lemma 4.3.6.

The following Proposition shows that if an interval [e, w] has a special matching

which is not a multiplication matching, then w must be of a special form.

Proposition 4.3.7 In case (1) any element u < w has a reduced expression
u=---rfrnafa---, wheren € {e, f};

In case (2) any element u < w has a reduced expression of the form u =
-rBrp(afa---)d, where n € {e,f}and 6 € {e,r};

In case (3) any element u < w has a reduced expression u = ---tstersr---,

where ¢ € {e, s}.

Proof. It is clear that in all cases it is enough to prove the statement for u = w,
the general result following by the subword property.

(1) Let afa---tst be a longest subword of a reduced expression of w given
by alternating s and ¢, starting with @ and ending with ¢ with the first « chosen
as left as possible. Consider the first letter r that appears after the first « of
this subword. By Lemma 4.3.5, this letter  can be pushed to the left of this
subword. Hence we obtain a reduced expression for w where no r appears after
the first letter a and the thesis follows.

(2) This is similar to the proof of (1) but in this case a letter r can also
appear on the right of the longest subword of the form afa - -tst and we are

done.
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(3) Consider a reduced expression for w and look at the rightmost letter ¢
and at the leftmost letter r of this reduced expression. If this ¢t appears on the
left of this r we are done. Otherwise, by Lemma 4.3.6, there cannot be a letter
s between them and rt = tr. So these two letters are adjacent and hence we
can find a reduced expression for w in which all the letters ¢t appear before all

the letters r and the result follows. O

Proposition 4.3.8 There exists x € {r,t} such that either M = \s or M = p;
on Wi 23 (w).

Proof. We may assume that [e,w] is not dihedral. Note that the result is
true for a special matching M of [e,w] if and only if it is true for the special
matching M of [e,w™'] defined by M(z) := (M (z~'))"", for all z < w™'. We
may clearly assume that M is not a multiplication matching and that

4 ¢ {|Wp sy (W), Wi, sy (w)]}- (4.3)

In particular, rs # sr and ts # st If M(r) = rs and M (t) = ts we are in case
(1) (possibly by exchanging the roles of r and t). If M(r) = sr and M(t) = st
then M is in case (1). If M(r) = sr # rs and M(t) = ts # st we are in case
(3). So we only need to consider these two cases.

In case (1) we have that 8 = s otherwise, by Proposition 4.3.7, Wy, ;(w) =
{e,s,r,rs} and this is not possible by (4.3). By contradiction, suppose that
M # ps on Wy, o1 (w), and let yo € Wy, ;3 (w) be a minimal element such that
M (yo) # yos. By Lemma 4.3.5, yot £ w, but this is a contradiction, since w is
not dihedral.

In case (3) we claim that either M = p; on Wy; i (w) or M = Xs on Wy, iy (w).
We prove this statement by induction on [(w). By Proposition 4.3.7 w =
Rﬁgswﬂ (this being a reduced expression), where ¢ € {e,s}. By (4.3)

k h
we have h,k > 2. Let w; and ws be the two coatoms of [e,w] obtained by

deleting, respectively, the first and the last letter of this reduced expression of
w. Clearly, there exists i € {1,2} such that M restricts to a special matching
of [e,w;]. We assume i = 1 the case i = 2 being similar. By our induction hy-
pothesis either M = p, on Wy 3 (w1) or M = As on Wy, 3 (wy). In this second
case we are done since Wy, s (w1) = Wy, 53 (w). So assume that M = p, on

Wiesy(wr). But Wiy o3 (w) \ Wy 6y (wr) ,- - sts} and since, by Propo-

= {---tst
——
k k+1
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sition 4.3.3, M stabilizes Wy, 4 (w) we necessarily have M (;--tst) = (.- - sts)

k k+1
and hence M = p; on Wy o1 (w). O

Proposition 4.3.8 allows us to add some hypothesis to the cases we are dealing
with, without affecting the generality of our argument.

(') M(t) = ts, sr # rs, M = p; on Wy, a(w) and M # ps on Wi,y (w).
We let zo be the minimal element such that M(zg) # zos and we let

afa---tst be its unique reduced expression.

(2') M(t) = ts, rs = sr and M # ps on Wy, n(w). We let 2o be the mini-
mal element such that M (z¢) # zos and we let afBa ---tst be its unique

reduced expression.
(3") M(t) =ts # st, sr #rsand M = Xs on Wy, .y (w).
The next result describes how a special matching acts on the interval [e, w].

Proposition 4.3.9 In case (1’) let u < w, v = - -rBrypafa--- where n €
{e,B} and f ¢ Dg(---rBr). Then M(u) ="---rfrM(nafa---).

In case (2°) let u < w, u = ---rfrn(aBa---)6 where n € {e, B}, § € {e,r}
and 8 ¢ Dgr(---rBr). Then M(u) = ---rBrM(nafa---)d.

In case (8°) let w < w, u = ---tstersr--- where ¢ € {e,s} and s ¢
Dy (rsr---). Then M(u) = M(---tste)rsr---.

Proof. (1’) We proceed by induction on I(u) the case - - - rfr = e being trivial
and the case nfaf--- = e following by Lemma 4.3.2 if § = t and by our
hypotheses if § = s.

So suppose that the length of the string - - - rr is at least 1. We may assume
that M (nafa---)>nafa--- # e, else the statement follows by our induction hy-
pothesis. Now let € Dy, (---rfr). Then zu<u and by our induction hypothesis
M(zu) = z(---rfr)M (nafa---). Now let v be the unique element such that
v<dnafa---and M(v) >v. Then ---rfrv du and M(---rfrv) = ---rBrM(v)
by our induction hypothesis. Since ---rfrM (nafBa---) covers u, M(zu) and
M(---rBrv) and these three elements are clearly distinct, we necessarily have
M(u) =---rfrM(nafa---).

(2%) We proceed by induction on I(u). We may assume that M (nafa---) >
nafa-- - as otherwise the statement follows by our induction hypothesis. Sup-
pose first that ---rfr = e. Then we can assume § = r and nafa--- # e
as otherwise the result would be trivial. So, if we define v as in case (1),
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we have that vr and nBag--- are both covered by u. Then M (u) is neces-
sarily equal to M (nafa---)r since this is the unique element that covers u,
M (vr) = M (v)r and M (nBac - --) and the result follows similarly. If - - - r8r # ¢
and nBaf--- = e the claim follows from Lemma 4.3.2 and if ---rf3r # e and
nBaf - -- # e the proof is similar to the case (1°).

Case (3’) is very similar to case (1’) and is left to the reader. O

The next result gives some further restrictions on a special matching which

is not a multiplication matching.
Proposition 4.3.10 In case (1°) let w = ---rfBrnafa---, with n € {e, B} and
——

h
B¢ Dg(---rpr). If h>2 and B € Dr(w), then M o Xg = Ago M.
In case (2°) let w = ---rBrn(aBa---)d, with n € {e,B}, § € {e,r} and
——

h
B¢ Dr(---rpr). If h>2 and B € Dr(w), then M o Xg = Ago M.
In case (8°) let w = ---tstersr---, withe € {e,s} and s ¢ Dg(rsr---). If

h
h > 2 and s € Dp(w), then M o ps = pso M.

Proof. By Lemma 4.2.5, we know that two special matchings M and N of a
Bruhat interval [e, w] commute if and only if they do inside the dihedral intervals
containing M (e) and N (e).
In cases (1’) and (2’), since M = ps on Wy, 1 (w) it is clear that Molg = Ago M
on W, 51 (w). So we only have to show that M o Ag = Ag o M on Wy 1 (w).
Let u := faf --- < w. We claim that if M (u) > u then M (u) = faf---. In
—— ——

k k+1
fact, consider v := fBr afa---. Itis clear that u<tv < w. By Proposition 4.3.9 we
———

k—1
have that M (v) = frM (aBa---). Since, by the definition of a special matching,
———

k—1
M (v) > M (u) we necessarily have M(afBa---) > afa---. By Proposition 4.3.3,
—_—— S —

k— k—
M(afa---), M(u) € Wigpn(w), so M(v) =1Brozﬁoz---laund M(u) = Baf---.

k—1 k kt1
Now consider an orbit of (M, \) inside Wy, (w) of cardinality greater

than 2. We show that the cardinality of this orbit is necessarily 4. Let z be the
smallest element of this orbit, say z = afa---. Then \g(z) = faf - -, forcing
——

k k

—1

M (z) = afa---. Then by our claim M (Ag(2)) = fafB--- = Ag(M(2)).
k k+1

The proof of case (3’) is very similar and is left to the reader. O
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The following result is not needed in the sequel and is a particular case of
Theorem 4.4.7. Nevertheless we state and prove it to complete the discussion
on groups of rank 3.

Theorem 4.3.11 Let (W, S) be a Cozeter system of rank 3, w € W , l(w) > 1
and M be a special matching of [e,w]. Suppose that [e,w] is not a dihedral

interval. Then there exists a multiplication matching N of [e,w] such that
1. N(M(u)) = M(N(u)), for all u < w;
2. N(w) # M (w).

Proof. We can clearly assume that M is not a multiplication matching. In
fact, if M = As; then w has a reduced expression having s as a first letter
w = ss1--- s and hence it is enough to set N = pg, , and similarly if M = p;.
Note also that the statement is true for M if and only if it is for the special
matching M defined in the proof of Proposition 4.3.8. If there exists a t € S
such that M is not a multiplication matching on Wy, ;3 (w) then, by Proposition
4.3.8, either M or M is in one of the cases (1°), (2’) or (3°). If such a ¢ does not
exist we are necessarily in case (3’). So we are reduced to consider these 3 cases.
In cases (1) and (2°), if r € Dr(w) it is enough to take N = A,. Otherwise
we necessarily have 8 € Dp(w) and fr # rf. Then, by Proposition 4.3.10,
M o \g = Mg o M and, by Proposition 4.3.9, M(w) # Ag(w). Once again case
(3’) is similar and is left to the reader. O

4.4 Main result

Now we face the problem of a special matching of an interval [e,w] where w
belongs to an arbitrary Coxeter group. We recall the following result for future
references. It follows by the proof of Theorem 5.2 of [17] and in fact holds in

much more generality (see Theorem 7.2.3).

Theorem 4.4.1 Let (W, S) be a Cozeter system, w € W and M be a special
matching of [e,w]. Suppose that, for all v < w with M(v) < v, there exists a
multiplication matching Ny, of [e,v] such that M N, = N, M and M (v) # N,(v).
Then

Ruw(q) = ﬁM(u),M(w) (q) + x(M(u) > u) qﬁu,M(w) (9)

for all u < w.
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rki - kpts

ki---kpts srky - kp

k1~~~k‘pt ’I"kl---kp

Figure 4.5: Proof of Lemma 4.4.3.

Lemma 4.4.2 Letw € W and M be a special matching of [e, w] with M (e) = s.
Then there exists at most one © € S such that M # Xs and M # ps on

W{s7x}(w)'

Proof. Suppose there are 2 such elements, say ¢ and r. It is known that for all
J C S there exists a unique maximal element in Wy (w) that we denote w[.J], so
that Wy (w) = [e, w[J]]. By Proposition 4.3.3, M restricts to a special matching
of [e,w[{s,r,t}]]. But this contradicts with Proposition 4.3.8. O

Lemma 4.4.3 Letw € W, M be a special matching of [e,w] and s = M (e). Let
t,r € S be such that M (t) = ts # st and M (r) = sr #rs and letk1,...,k, € S\
{s}, p € N, be such that kjs = sk; for j € [p]. Suppose that rky ---kpt <w and
I(rky---kpt) =p+2 . Then there exist hy,...h, € S such that {ky,...,kp} =
{h1,...,hp} and i € [0,p] such that rky ---kyt = hy --- hitrhigy -+ - hy.

Proof. By Proposition 4.3.3 and Lemma 4.3.6 (applied to the interval [e, w[.J]],
where J := {s,r,t}), we have that ¢tr = rt, so the result holds if p = 0. We
proceed by induction on p. Let u := rky --- kpt. It suffices to show that either
Dp(u) # {r} or Dr(u) # {t}, the result then following by induction on p.
It is clear that ki ---kpt < u. Furthermore, by Lemma 4.3.2, M (ky - - kpt) =
ki ---kpts and similarly M (rky --- k,) = srkq - -+ kp (see Figure 4.5). Therefore,
since M is a special matching, M(u) > u, M(u) > k... kpts, and M(u) >
srky ...k, If r is the unique left descent of u and ¢ is its unique right descent
then necessarily either r € D, (M(u)) or t € Dgr(M(u)) (or both). Suppose
r € Dr(M(u)) the other case being similar. Since r £ ki ---kpts and M (u) >
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ki -- - kpts we have M (u) = rky - - - kpts. Now, since rky - - - kptst> srky - - - k, and
t £ srky -+ -k, we have rky - - - kps = srky - - - kp, which implies sr = rs and this
is a contradiction. O

Proposition 4.4.4 Let J:={reS : M(r)=sr} and J :={re S : M(r) =
sr #rs} CJ. Thenu’ € Wa\ s for all u < w.

Proof. Note first that J' = {r € J: rs # sr}. Let u € [e,w]. Fix a reduced
expression of u”/. Suppose, by contradiction, that {r € S: r <u/}N.J" # 0.
Consider the last letter of » € J' appearing in this expression, say r. Then
consider the first letter ¢ ¢ J after . Between r and ¢ there cannot be any s by
Lemma 4.3.6. Hence there can only be letters commuting with s. By Lemma
4.4.3 after a finite number of steps we find a reduced expression of u” that ends

with a letter in J which is clearly a contradiction. [J

Proposition 4.4.5 Lett € S be such that M is not a multiplication matching
on Wiy (w). Suppose that M(t) = ts and denote by xo = afa---tst the
minimal element in Wis 3 (w) such that M(zo) # wos. Then o % (u?){®t} for

all u < w.

Proof. Consider a reduced expression for u” and a longest subsequence of this
expression of the form afa---tst, chosen with the left-most o and the right-
most t. Consider the first letter » which appears after the first « distinct from
s and t. If M(r) = rs # sr then this letter can be pushed on the left of the first
a by Lemma 4.3.5. If M(r) = rs = sr then, by Lemma 4.3.5, we are in one of
the following three possibilities: r commutes also with ¢, or it can be pushed on
the left or it appears after the last ¢. In the first two cases it can be pushed on
the left. So we can suppose that the first such letter r appear after the last ¢.
By Lemma 4.3.5, all the letters that appear after the last ¢ necessarily belong
to J. So u”’ has a reduced expression in which after the first letter o there are
only letters s and ¢ and this clearly implies the statement. O

Theorem 4.4.6 Let (W, S) be a Cozeter system, w € W and M be a special
matching of [e,w] with M(e) =s. Let J:={r €S : M(r) = sr}. Then

(i) If there exists a (necessarily unique)t € S such that M (t) = ts but M # ps
on Wis n(w), then

M) = (@)D M (@) oy () gy ) ),
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for all u < w.

(i) If M is a multiplication matching on Wi, s\ for all z € S, then
M(u) = u’suy,

for all u < w.

Proof. (i) We proceed by induction on I(u) the result being clear if [(u) = 0.
Note that, by Proposition 4.3.3, M((uJ){S’t}(uJ){s}) € Wy, (w) and so, if we
set

= () M () gy () gy ) M),

then (u') (s (u))gs) = M((UJ){s7t}(UJ){S}). We may assume that M (u) >
u and that M((UJ){s7t}(U]){s}) > (u”) 5,43 (us) sy otherwise we are done by
induction.

Note first that if v = (u”){5*} the result follows from Propositions 4.4.4 and
4.4.5 and Lemma 4.3.2, if u = (u”) 54y (us)(s) it is trivial, and if u = ) (uy)

it follows from Lemma 4.3.2. Now consider the following three possibilities:
L If (u){st £ elet 21 € D((w”)®) and vy := 2, u.

2. If (uJ){s’t}(u,]){s} #elet v« (U,J){S’t}(u,]){s} be such that M (v) > v and
let uy := (u’) {5ty {s(uy).

3. If (s} (uy) # e let 23 € Dr(*}(uy)) and ug := uzxs.

By our previous remark, we may certainly assume that at least two of these
three hypotheses are satisfied and hence that there exists i,j € {1,2,3}, 7 # j,
such that w; and u; can be defined as above. Applying our induction hy-
pothesis to u; and w; we have that M(u;) > u;, M(u;) > uj. The element
(u’){s:t} M((uJ){s’t}(uJ){s}) {s}(uy) covers u, M (u;) and M (u;). By Proposi-

tion 4.1.2, we conclude that M (u) = (u”){st} M((uJ){s,t}(uJ){s}) £} (uy).

(ii) This is similar and simpler than case (i) and is left to the reader. O

Theorem 4.4.7 Let (W,S) be a Cozeter system, w € W, l(w) > 1 and M be
a special matching of [e,w] and suppose that [e,w] is not a dihedral interval.

Then there exists a multiplication matching N of [e,w] such that

1. N(M(u)) = M(N(u)), for all u < w;
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2. N(w) # M(w).

Proof. Again we note that the result is true for a special matching M if and
only if it is true for M and hence we can suppose that we are in one of the
two cases of Theorem 4.4.6. Suppose to be in case (i). If (w’)i>t £ e let
z € Dp((w?)th). If  # B then we choose N = \,. We have M = p, on
W, (w) by Proposition 5.14 and hence we are done by Lemma 4.2.5. If z =
then there exists r € S, r < (w”){%* such that fr # rB. Then if we let K :=
{r,s,t}, Proposition 4.3.10 applied to the interval [e,w[K]] = Wgk(w) implies
that M)z = A\gM and the thesis follows by Lemma 4.2.5. If (w”){5t} = ¢ then
necessarily t*}(uz) # e (otherwise [e, w] is dihedral) and we proceed in a similar
way considering a right descent of {#}(uy).

If we are in case (ii) the proof is left to the reader. O

As a corollary of Theorem 4.4.7, we can prove Lusztig’s conjecture on the

lower Bruhat interval of any Coxeter system.

Corollary 4.4.8 Let (W,S) be a Cozeter system, w € W and M be a special
matching of [e,w]. Then

Ryw(q) = ﬁM(u),M(w) (@) + x(M(u) > u) qﬁu,M(w) (9)
for all u < w.

Proof. Straightforward by Theorems 4.4.1 and 4.4.7. O

Corollary 4.4.9 Let (W,S) and (W', S’) be two Cozeter systems, w € W and
w' € W', and let e and €' be the identities of W and W', respectively. Suppose
that @ : [e,w] — [¢/,w'] is an isomorphism of posets.

Then, for all u,v € [e,w], we have:
- Puo(9) = Po(u),av) (),
- Ru,v(q) = Rcb(u)7<I>(v) (Q)’

- Ru(q) = Ra(u),a0)(q)-

Proof. Straightforward by Corollary 4.4.8. [
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4.5 Hecke algebra actions

In this section we introduce and study, for each v € W, a Hecke algebra naturally
associated to the special matchings of [e, v] and an action of it on the submodule
of the Hecke algebra of W spanned by {T,, : u < v}. This action enables us to
reformulate Corollary 4.4.8 in a very compact way in Theorem 4.5.2 by saying
that this action “respects” the canonical involutions ¢ of these Hecke algebras.
This, in turn, implies that the usual recursion for Kazhdan-Lusztig polynomials
(Theorem 0.5.9) holds also when descents are replaced by special matchings
(Corollary 4.5.4) thus giving a poset theoretic recursion for the Kazhdan-Lusztig
polynomials which does not involve the R-polynomials.

Let v € W and S, be the collection of all the special matchings of [e, v].
We denote by (WD,SU) the Coxeter system whose Coxeter generators are the
elements of S, and whose Coxeter matrix is given by m(M, N) := o(M N), the
period of M N as a permutation of [e,v]. Then it is clear that we have a natural
action of /V[Z, on the vector space ®,<,Cu. We denote by 72,, the Hecke algebra
of W\v and by H, the submodule of H defined by

Hy = @Z[q%,q’%]Tu-

u<v

Our first result defines the action of ;Q,, on H, that we wish to study. It
is a natural generalization, and unification, of the left and right multiplication
actions of H(Wp, (v)) and H(Wpy(v)) on H,.

Proposition 4.5.1 Let v € W. Then there exists a unique action of’;qv on H,
such that

To(Ty) = 4 M if M(u) > u, (44
4Ty + (¢ = 1)Ty, otherwise,

for allu <wv and oll M € S,.
Proof. The uniqueness part is trivial. To prove the existence we only have to

check that Ta (Tar (Tw)) = ((¢ — 1)Thv + q)(Ty) for all u < v and M € S,, and
that, if M, N € S, and m := m(M,N), then

Tr (TN (Tar (- +(Tw))) = TN (Tar (T (- +(Tw)))) (4.5)
—_— —_—

for all u < v. The proof of the first part is a simple verification and is left to
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the reader.

To prove the second one let M, N € S, be such that m(M,N) = m and
u € [e,v]. If |(M, N)(u)| = 2d then necessarily d | m. Let I(d) be the dihedral
group of order 2d and s and ¢, with m(s,t) = d, be its Coxeter generators. We

define a poset isomorphism @ : (M, N)(u) — I>(d) by

O(--- MNM(ug)) := -+ - sts,
k k

for all k € [2d], where ug is the smallest element in (M, N)(u), and extend this
to a linear map ® : H((M, N)(u)) — H(I2(d)) (where H((M,N)(u)) is the
submodule of H, spanned by {T; : € (M,N)(u)}) by ®(T;) := Ty, for all
x € (M, N)(u). Then it is clear that ®(Ths o T,) = Ts®(T,) and ®(Tx o T,) =
T:®(T,) for all z € (M, N)(u). There follows that

<I>(TM(TNd(TM(---(Tm)))) = TsTifs---@(Tz)
T,T,T; - - ®(T,)
d

S(TN(Tr(Tn (- -+(T%))))-
d

Hence Ty (TN (T (---(T%)))) = Tn(Tr(Tn(---(T%)))) for all z € (M,N)(u)
d d

and (4.5) follows. O

It is natural to wonder about the faithfulness of the action defined in (4.4).
This will be adressed in Chapter 6.

We can now state and prove the first main result of this section, which is
a compact reformulation of our main result (Corollary 4.4.8) in terms of the
action of ’}-A[U on H,. Note that, by Proposition 0.5.1, H, is invariant under the
involution ¢ defined on #H. For convenience, we use the same symbol ¢ also for

the corresponding involution of the Hecke algebra 7-ALU.
Theorem 4.5.2 Let v € W. Then for all h € H,, he ﬁv

o(h(h)) = 1(h)(e(R)).

Proof. We may clearly assume that h = T}, for some u < v and h = Ty, where



106 Chapter 4. Proof of Lusztig conjecture

M is a special matching of [e, v].

Suppose first that u <t M (u). Then, by (4.4) and Proposition 0.5.1, we have

U(Tu(Tw)) = L(TM(u)) = (TM(u)*l)_1 = _Euq_l(u)_l ZEsz,M(u) Ty.

where £, = (—1)!®) for all y € W.
On the other hand

(Tar)((Tw) = Tyf (T;74)
= [q_lTM - (]- - q_l)] (Euq_l(u) Zngz,u Tz)

= 5uqil(U){ Z [qilstz,u TM(x) - (]- - qil)stz,u Tm] +
zAM (z)

> 0 e R @Tare) + (= DT2) = (1= ¢ oo R Tul}
z>M (z)

= _Euq_l(u)[ Z q_lngM(z),uTx +
M(z)<z

Z (]- - qil)stz,uTz + Z 5zRM(x),uTz]

M(z)>z M(z)>a
= _Euqil(u)[ Z qilngm,M(u) T, + Z qilngz,M(u) Tx]
M(z)<z zAM (z)
by Corollary 4.4.8 and the assertion follows in this case.

Suppose now that u t> M (u). Then applying what we have just proved to
M (u) yields that

T, = uT0) = dTar(Tagg)) = UTs) ((Tar))) = Tog (Tyghy 1)

Therefore, by Proposition 4.4, TM(TJ,ll) = TA}}H),P Hence

UTm(Tw) = (@D + (¢ —1)Tw)
= 0 Ty + (@ = DT,
= qilTM(Tu_—ll) + (‘fl - 1)Tu_—11
= [¢'Tw— (1 —g HUT)
— T];[l(Tfl )

w1
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= uTw)((Tw)),

and the result again follows. [

Recall from Theorem 0.5.4 the definition of the Kazhdan-Lusztig basis C' =
{C! : v € W} of the Hecke algebra of W.

Theorem 4.5.3 Let v e W and M € S,. Then, for dall x € [e,v],

o T Y, wza)CL, if M(z) >,
C;\/I(O;:) = . Ez: M(z)<z}
(g +q2)C., if M(z) <z,

mn Hy.

Proof. Suppose first that M (z) > z. Let, for brevity, Dy, := C,(Cy) —
> (2 M(z)az} H(2,2)CL. To prove that Da(z) = C)y(,) We use the characteriza-
tion of the Kazhdan-Lusztig basis given in Theorem 0.5.4 ([39, Theorem 7.9]).
It is clear from Theorem 4.5.2 that ¢(Das(z)) = Darz) - So we only need to
show that if
Di(zy = g > Py vi(2) (@) T,
u<M(z)

then
D) Para) ey (0) = 1,
ii) IBU’M(Z) (q) € Z[q] and has degree < 1l(u, M(z)) if u < M ().

We distinguish two cases.
Suppose u<t M (u). Then Ty (C},) involves T, with coefficient q_@qPM(u),z(q).
It follows easily that the coefficient of T, in C},(C1) is

_ UM (=)

¢ 2 qPuw,(@) +4q

_ UM (=))

Py.(q).

On the other hand, if u > M (u), Th(C}) involves T, with coefficient equal to
q_% (Paruy,2(9) + (¢ — 1) Py 2(q)). Again it follows easily that the coefficient
of T, in C,(C}) is

_ UM (=)

¢ 2 Py +q

_UM(=))
2

un,a: (q)
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Finally, the coefficient of T}, in > u(z,z)C’, is in both cases

_ =)
> wza)a F Pus(a)

{z:M(z)dz}

So, if we set ¢ =1 if M (u) <u and ¢ = 0 otherwise, we only have to show that

the polynomials

e . 1(z,M(z))
0" Pury,e(@) + ¢ Puale) = > ulzz)g 7 Pusx(q)
{z: M(z)z}

satisfy properties i) and ii). The proof of this fact can be done in exactly the
same way as the proof of [39, Theorem 7.9] (see [39, § 7.11]) and it is therefore
omitted.

Assume now that M (z) <z. We proceed by induction on I(z). If [(z) =1
then necessarily z = M (e) and the result is easy to verify. So assume [(z) > 2.
Then by what we have just proved we have that

Ch = Ch(Chui) = S ulz M(@)CL (4.6)

{z: M(z)<z}

Therefore, since C'y,C', = (g + q_%)C’}M,

Cu(Ch) = (CuC)(Chuwy) — D wlzM(x))Chy (CL)
{z: M(2)<z}

= (¢% +¢"3)C.,

by (4.6) and our induction hypothesis, as desired. O

Theorem 4.5.3, and its proof, imply the following poset theoretic recursion
for Kazhdan-Lusztig polynomials depending on special matchings. It generalizes
the usual recursion for Kazhdan-Lusztig polynomials depending on left or right
descents (Theorem 0.5.9).

Corollary 4.5.4 Let u,v € W, u < v, and M be a special matching of [e,v].
Then

— Uzv)
Pun(@) = 0" Prruy e (0) @ +0 Pusay (@)= Y, nlz, M(0))g 2 Pu:(q)
{z: M(z)<2z}

where ¢ =1 if M(u) <Qu and ¢ =0 otherwise. O
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We illustrate Corollary 4.5.4 with an example. Let v = 3421 € &(4). The
Bruhat interval [e,v] has 5 distinct special matchings, ls, p2, p3, A2, A1, which
are shown in Figure 4.6 (for the reason of the notation l» see Theorem 0.7.3).

Using Corollary 4.5.4 for the special matching l» we obtain

P, = qplz(e),lz(v) + Pe,lg(v) - Z :U*(Zal2(v))q > P
{z:l2(2) <z}

= qPi32a 3412+ Pegarz — (1-q+ Pejazs +1-q- Pogora + 1% - Pa1324)
g+ 1)+ @+1)—qg—q—¢*.

Note that using the other 4 special matchings we obtain genuinely different

computations for P, 3421. In fact, we obtain

qg+1—gq using pa,
P _J a+(1+4q)—q—q usingp3,
e,3421 = .

qg+1—q using As,

g+ (1+¢q)—q—q using A;.

The reason for this is that the special matching 5 is not isomorphic to any other
special matching of [e, 3421], namely that do not exist a poset- automorphism @
of [e,3421] and a special matching M of [e, 3421] satisfying ®l>(z) = M ®(x). In
fact, any automorphism @ of [e, 3421] must fix 1324 and 3412, namely ®(1324) =
1324 and ®(3412) = 3412. Therefore, any special matching M of [e,v] such
that ® o M = I o ® must satisfy M (e) = 1324 and M (3421) = 3412, but I, is
the unique special matching of [e,v] satisfying these two conditions. Actually,
more is true. Suppose that u € &(n) is such that [e,u] = [e,3421] (poset-
isomorphism). Since [e,v] has only three atoms we deduce that any reduced
expression of u is composed of letters of exactly 3 different kinds, say s;, s; and
Sk, with i < j < k. If these indices are not consecutive we would have at most
4 permutations of length 2 in [e,u]. So the indices must be consecutive and
we may assume that s; = s1, 85 = s2, s = s3 and u € &(4). But in &(4)
there are only 3 permutations of length 5, namely v, v~ ! and 4231, and [e, 4231]
has 4 coatoms. Hence the special matching l» of [e,3421] is not isomorphic to
any multiplication matching in any symmetric group. In fact, with more work
one can show that the special matching I> of [e,3421] is not isomorphic to any
multiplication matching in any Coxeter system (even infinite). We leave this to

the interested reader.
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_—— = Al

Further covering relations

Figure 4.6: The special matchings of [e, 3421].



Chapter 5

Combinatorial poset theoretic

formulae

In this chapter, we introduce three families of sequences of special matchings:
the regular sequences, the B-regular sequences, and the R-regular sequences. All
of them are new combinatorial analogues of the concept of reduced expression.
Using these sequences, we find some formulae valid for Kazhdan-Lusztig and

R-polynomials of any Coxeter system.

5.1 Regular sequences

Our purpose in this section is to generalize an algorithm and a closed formula
of Deodhar ([28, Algorithm 4.11] and [26, Theorem 1.3]) for Kazhdan-Lusztig
and R-polynomials, respectively.

Let v € W. We say that a sequence (My,...,M;) (where [ := I(v)) is a

reqular sequence (of special matchings) for v if, for all ¢+ = 1,...,1, M; is a
special matching of [e, M;11 - - - M;(v)]. Note that, in particular, M; - - - M;(v) =
e. The regular chain associated to a regular sequence (Mj,...,M;) for v is

(vo,...,v) where v; := My --- My(v) = M;--- My(e), for i =0, ...,1. Clearly,
e=wvp<du; <---<dv =vand M;(vi—1) =v;, fori=1,...,1.

For example, if W = &(4) and v = 3421 then the sequence (A1, p3, A2, p2,12)
illustrated in Figure 4.6 is a regular sequence for v. Note that, if s;, ---s;, is
a reduced expression for v, then (A;,,...,\;,) and (pi,.-.,p;) are two regular
sequences for v. Thus, the concept of a regular sequence is a generalization of

111
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that of a reduced expression. We say that a regular sequence M = (M, ..., M)
for v comes from a reduced expression if there is a reduced expression s;, - - s;,
of v such that either M = (\;,,..., \;;) or M = (pi,,...,ps)-

Our first results are the analogues, for any regular sequence, of two well
known results for reduced expressions. They are used repeatedly throughout

the rest of this work, often without explicit mention.

Lemma 5.1.1 Letv € W, and (M, ..., M;) be a reqular sequence for v. Then
for all w < v there exists 1 < iy < ... < iy <1 such that (M;,,...,M;,) is a

reqular sequence for u.

Proof. We proceed by induction on [ the statement being trivial for [ = 1.
So assume that [ > 1. Note that (My,...,M;_1) is a regular sequence for
M;(v). Let u € [e,v]. If M;(u) < w then, by Lemma 0.7.1, M;(u) < M,;(v) so
by induction there exist 1 <4y < ... <1 <! —1 such that (M;,,...,M;,)is a
regular sequence for M;(u), hence (M;,, ..., M;, , M;) is a regular sequence for
w. If Mj(u) > u then, by Lemma 0.7.1, v < M;(v) and we conclude again by
induction. O

As a corollary of the previous result, we obtain a generalization of the FEx-
change Property (Theorem 0.3.1).

Corollary 5.1.2 Let v € W and (M, ..., M;) be a reqular sequence for v. Let
M be a special matching of v. Then there exists i € [l] such that

o~

M@w)=MM;---Mi(e) = M;---M;--- M (e),

where ]\/4\Z means that M; has been deleted.

Proof. By Lemma 5.1.1, there exists a subsequence of (M, ..., M;) which is a

regular sequence for M (v). O

Lemma 5.1.3 Let v e W and (M,..., M;) be a reqular sequence for v. Then
the composition M;, --- M;, (e) is defined for any 1 < iy <ig < --- < i <.

Proof. Let (vg,...,v;) be the regular chain associated to (M, ..., M;). We
will show that M;, --- M;, (e) is defined and M;, ---M;, (e) < v;, for all 1 <
i < <---<ip <L

We proceed by induction on k, the claim being clear if k = 0. Solet 1 <i; <
is < -+ < ip <, with k > 1. By our induction hypothesis u := M; -+ M;, (e)
is defined and u < wv;, , < w;,. But, by the definition of a regular sequence of

k-1
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special matchings, M;, is a special matching of [e,v;,]. Therefore M;, (u) is
defined and M;, (u) < v;,, as desired. O

Let v e W and M = (My, ..., M;) be a regular sequence for v (so [ = I(v)).
Given S = {i1,...,ix}< C [I] we let

w(S) := M;

i

: Mi1 (6)

and we define, for each j € [I],

where y :=7(SN[j — 1]). We also let

d(S,1) == > £I(S)

J€l\S

and
da(S) = £;(S).
JjES
Note that (M;,, ..., M;,) is a regular sequence for M;, --- M;, (e) if and only if
d>(S) = 0. Let, for brevity,

d(S,1) = dy (S, 1) + da(S).

We say that S is distinguished, with respect to M, if dy(S,1) = 0. In the case
that M comes from a reduced expression this concept coincides with the one
introduced by Deodhar in [26, Def. 2.3]. We denote by D(M) the set of all
subsets of [I] which are distinguished with respect to M, and we let, for u € W,

D(M)y :={S € DIM) : w(S) = u}.

We can now prove the first main result of this section. It is a closed formula

for R-polynomials which generalizes Theorem 1.3 of [26].

Theorem 5.1.4 Letv € W and M = (M,..., M) be a reqular sequence for
v. Then

Eu v(Q) = Z ql(v)—|5|,

SeED(M)y
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for allu e W.

Proof. Our proof is similar to the one given in [26, §5], but simpler. The result
is clear if u £ v, so assume u < v. We proceed by induction on [ := [(v), the
result being trivial if I = 0.

So assume [ > 1 and let, for convenience, M := M;. We distinguish two
cases.

a) M(u) <Qu.
This implies that if S € D(M), then [ € S by the definition of a distinguished
subset. Note that (My,..., M;_1) is a regular sequence for M (v). Define a map

@ : D(M)u — D(Ml, . Ml*l)M(u)

by letting ¢(S) = S\ {I} for all S € D(M),. The map ¢ is well-defined and
bijective since [ € S. Therefore, by Corollary 4.4.8 and our induction hypothesis

T el ) MO = By i (@) = Ruw(9)-
SED(M), S'€D(My,...;Mi—1) nr(u)
b) M (u) > u.

Let D(M); :={S € D(M), : 1 ¢ S} and DIM)} :={S € DM),, : |l € S}.
Define a map ¢ : D(M), — D(My,...,M;_1), U D(Ml,...,Ml,l)M(u) by

letting
S, ifl ¢S,
Mﬁ:{sum mi&
for all S € D(M),.

We claim that ¢ is a bijection, that o(D(M), ) = D(Mi,...,M;_1), and
that (D(M)F) = D(Mx, ..., Mi_1)p(u)- All verifications are obvious, except
for the surjectivity of ¢. But if S’ € D(M;,... M;_1), then S' € D(M), (since
M (u) > u), and if S" € D(My,...,M; 1)) then S" U {l} € D(M), and
this proves the surjectivity. Therefore, by Corollary 4.4.8 and our induction
hypothesis,

S go-lsl = ¥ FME)=IS 1 4

SGD(M)u S’GD(Ml,...,Ml_l)u

Z ql(M(v))*\S”l

S"ED(My,....Mi_1) M (u)

= qRu () (@) + Ras(uy v (@)
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= Rum(‘])a

as desired. O
The preceding result has the following consequence, which is needed in the

rest of this section, and which appears to be difficult to prove directly.

Corollary 5.1.5 Let v € W and (My,...,M;) be a regular sequence for v.
Then 7 is a bijection between {S C [I] : d1(S,1) = d2(S) = 0} and [e, v].

Proof. Clearly, 7(S) € [e,v]. Furthermore, since [#(*?)](R,,) = 1 for all
u € [e,v], we conclude from Theorem 5.1.4 that for each u € [e, v] there exists
a unique distinguished subset S,, such that 7(S,) = u. Since a subset S C [I] is
distinguished if and only if d;(S,1) = 0, and since I(w(S)) = |S] if and only if
d>(S) = 0, the result follows.O

In order to prove the second main result of this section we need some further
properties of the action of the Hecke algebra 72,, on the module H, defined in
Section 4.5. The next result is the analogue, for regular sequences, of Proposition
3.5 of [28].

Proposition 5.1.6 Let v € W and (M,...,M;) be a reqular sequence for v.
Then
€
02 Cy, (Cy,_, (- (Chy, (Te)))) = j{: WEDT (s, (5.1)

SClt

mn Hy.

Proof. Let, for brevity, C} := C},, and T; := Ty, for i = 1,...,1. Note first
that the left-hand side of (5.1) is well defined since C},T; € 7?[1,1,, fori=1,...,1,
(where (vo, . ..,v;) is the regular chain associated to (My, ..., M;)). We proceed
by induction on [ > 1, (5.1) being clear if [ = 1.

So let I > 2 and suppose that (5.1) holds for / — 1. Recall that C} = q (1+7T3).

Then we have

a2 Ci((Ci_y (-~ ((C}(T)))

-I-Tz(ZqSl1 s))

SCli—1]

_ Z qd(S7l—1)TW(S)

SCli—1]
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+ > ¢ T n(s))
{SCli—1]: Mi(m(S))>m(S)}

+ 3 "D (T ary () + (@ = DTn(s))
{SCli—1]: Mi(w(S))<m(S)}

_ Z qd(S,l—l)Tﬂ(S)

{SClt—1]: My(=(S))>n(S)}

+ 3 "SI T suqy)
{SCli—1]: My(m(S))>m(S)}

+ > "SI (T suqy) + Tacs))

{SCli=1]: My(n(S))<am(S)}
= Z ¢" DT sy + Z ¢" DT sy,
SCli-1] SCli-1]
since d(S,1) = d(SU{I},1) =d(S,l — 1) +&/(S), and (5.1) follows. O
For brevity, we call a Coxeter system (W,S) nonnegative if its Kazhdan-

Lusztig polynomials P, , have nonnegative coefficients for all u,v € W.

Proposition 5.1.7 Let (W,S) be a nonnegative Coxeter system, v € W, and
(My, ..., M;) be a regular sequence for v. Then there exist L, € N[qli + q_%],
for each x <w, such that L, =1 and

Cht, (Cha, (- (O, (T)) = Y LaCy. (5.2)

z<v

Proof. Let, for brevity, C} := C},, for i =1,...,1. We proceed by induction
on [ >1, (5.2) being clear if [l =1 (with L, = 0).

So let I > 2 and suppose that (5.2) holds for I — 1. Then there exists
L, € Njg2 4 ¢ 2] for each z < M;(v) such that

Cli(Cis(--- (CLUT))) = Y LG

and f/Ml(,,) = 1. Therefore, by Theorem 4.5.3,

a( Y Lo)

Ci(Cia (- (C1(Te))))

<M (v)
= Z L, I:O;\/Il(x) + Z u(z, :L')C;]
{z<M;(v): M;(z)>z} {z: Mi(z)<1z}
+ (q% +q7 %)L, C,

{o<Mi(v): Mi(x)<}
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and the result follows. O

We can now prove the second main result of this section, which plays a

fundamental role in the algorithm.

Theorem 5.1.8 Given a nonnegative Cozxeter system (W,S) and v € W, let
(M, ..., M;) be a reqular sequence for v, and A C {x € [e,v]: L, # 0}, v € A.
Then there esists € C P([l]) such that

7> ¢S =Y LLCL (5.3)

Se& zEA

Furthermore, for any y € A\ {v}, y is mazimal in A\ {v} if and only if

deo Y g0) 00 (5.4)
{Se&: n(S)=y}
and
deg( Z qd(S’l)) < @ (5.5)

{Se&: n(S)=z}

for all y < © < wv. If these conditions are satisfied then

_ly,v) Hy,v)
L, = 3 gUSD=1 3 g —d(s.)

{Se€im(S)=y,d(s,1)> 152} (SEE:m(S)=y,d(S,1)> 1520}
(5.6)
and
Py, = Z gSh — Z g v —d(S)
{Se&: n(S)=y, d(S,)< %2} {See: m(S)=y, d(S,1)>"L )
(5.7)

Proof. Let x € [e,v]. The coefficient of T, in the right-hand side of (5.3) is
ZyeA Lyq’gPI,y. Since, by our hypotheses, L, and P, , are Laurent poly-
nomials in q% with nonnegative integer coefficients for all =,y < v, by Proposi-

tions 5.1.6 and 5.1.7 we have

_lw) _lwy _L
E Lyq~ > Py < E Lyq=™> Pry=g¢q : § : g,
yEA y<v {SeP([l]): n(S)=z}

where the < is coefficientwise, and this implies (5.3).

Now let y be a maximal element of A\ {v} and = € [e,v]. Comparing the
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coefficients of T, on both sides of (5.3) we obtain that

1(z,v)
DR D D7 il (5.8)

{Se&: n(S)=z} Z€EA
L™ 4 P, =y, (5.9)
Py oy, ify<z<ow, ’

and (5.4) and (5.5) follow since L, # 0 and L,(q) = L,(¢'). Conversely, let
y € A\ {v} be such that (5.4) and (5.5) hold. Then, by (5.8),

2,0 l
deg (Z qul(z)Pm’Z> < —(2’ v)

z€EA

for all y < z < v. Since L, and P, . are Laurent polynomials in q% with
nonnegative coefficients for all x, z < v, this implies that z ¢ A forally < z < v,

so y is maximal in A \ {v}.
Finally, if y € A\ {v} satisfies (5.4) and (5.5) then by (5.9) we have

1(y,v)
Z ¢"Y =Lyq 7 + Py,
{Se&: n(S)=y}

and (5.6) and (5.7) follow since deg(Py,,) < @ and L, € Njg% +¢ =]. O

Theorem 5.1.8 yields an inductive, entirely poset theoretic way of computing
Kazhdan-Lusztig polynomials, which generalizes the one given in [28]. In fact,
let v € W and assume that we have already computed the polynomials P, , for
all z,y < v. Take a regular sequence for v, and from it compute, for each z < v,
using Propositions 5.1.6 and 5.1.7, the coefficient P, of T, in

1(v)
q 2 Z LxC’;.

z<v

We apply Theorem 5.1.8 to the set A := {z € [e,v] : L, # 0}. If deg(P,) < @
for all z < v, then by Theorem 5.1.8 there are no maximal elements in A \ {v},

namely A = {v}. Hence
Y L.C,=C,

z<v

and P, = P, , for all z < v. Otherwise, let y < v be a maximal element such
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that deg(P,) > {22 Then, by (5.6),

(y,v)

1
0" By = Vi (Py(0) + Dusms (#007, (1).

where Uy, and Dy, are the linear operators satisfying:

{ 0, ifi<k,

. Di(q') =
¢, ifi>k +(7)

; q', ifi<k,
Ur(q') = {

0, ifi>k.
Since, by induction, we have already computed P, , for all z € [e, v] we may

compute the differences

(y,v)

P.=P,—q * LyP,, (5.10)

for all z € [e,v]. Clearly, P. is the coefficient of T, in

1(v)
q* Z L,C..

z€le,v]\{y}

If deg(PL) < @ for all z < v then Theorem 5.1.8 applied to A \ {y} gives

Y L.C,=¢,
zele,o]\{y}

and hence P, = P, , for all z < v. Otherwise, let y; < v be a maximal element
such that deg(P,,) > w, and repeat the above procedure with y; in place
of y (note that y1 # y by (5.10)). After at most |[e,v]| — 1 steps this process
will stop.

As an immediate consequence of Theorem 5.1.8 we obtain the following result
which, in the case that the regular sequence comes from a reduced expression,
is closely related to Theorem 4.12 of [28].

Corollary 5.1.9 Let (W,S) be a nonnegative Coxeter system, v € W, and
(M, ..., M) be a reqular sequence for v. Then there exists £ C P([l]) such that

Pyw(q) = Z qd(S,l)’

{Se&:n(S)=u}
for all u < v.

Proof. This follows immediately by taking A = {v} in Theorem 5.1.8. O
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5.2 B-regular sequences

Our purpose in this section is to obtain a bijection between subsequences of
certain regular sequences and certain paths in an appropriate directed graph.
This bijection has several nice properties, and transforms the concepts and
statistics used in the previous section into familiar ones on paths. The main
results of this section are new even in the case that the regular sequence comes
from a reduced expression.

Let v € W and M := (M, ..., M;) be a regular sequence for v. We say that
M is B-regular if

Mi(x) # MipaMiyo - Mg - Miyzo Mg ()

for all i € [I], k € [l — 1], and for all « € [e,v] for which both sides are defined.
Note that M is B-regular if and only if

Mi(x) # M1 Mo -+ - Mg, - - M;_o M;_1(x)

for all i € [I], k € [i — 1], and for all € [e,v] for which both sides are defined.

Let v € W and M := (My,...,M;) be a B-regular sequence for v. The
B-graph of [e,v], with respect to M, is the directed graph having [e, v] as vertex
set and where, for any z,y € [e,v], z — y if and only if I(z) < I(y) and there
exists ¢ € [I] such that

y=MM_1-- M1 M;M; 1 --- My_1 M ().

If x — y, then, by the definition of B-regular, there is a unique i € [I] such
that y = M;---M;--- My(x) (for if My---M;---My(z) = M;---M;--- M(z)
for some 1 < i < j <l then M;(&) = Mj_q1---M;---M;_1(Z) where & :=
M;j --- M;(x), which contradicts the fact that M is B-regular). We therefore
define

Az, y) == My, z) := 1.

For example, one may easily check that the regular sequence in Figure 5.1 is
actually B-regular. The corresponding B-graph is shown in Figure 5.2, where
we have labeled all edges © — y with A(z,y), and we have kept all vertices in
the same place for clarity.

Note that B-regular sequences always exist. In fact, given any reduced ex-
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...... My
— — M
_— M
_———. M

Figure 5.1: A B-regular sequence of special matchings.

pression s1 8 - - - 8, of v, the sequences (A, , As, 1, -+, As;) A0 (Psy Psos -+ -5 P, )
are B-regular, as it is easy to check. Therefore, the concept of a B-regular se-

quence is a generalization of that of a reduced decomposition.

One of the crucial properties of the B-graphs of lower intervals of Coxeter
groups is that they are always directed subgraphs of the Bruhat graph. This
hinges on the following result. Recall that we denote by T' the set of reflections
of a Coxeter system (W, S).

Theorem 5.2.1 Let v € W, and M be a special matching of [e,v]. Suppose
7,y € [e,v] are such that x='y € T. Then

M(z) *M(y) € T. (5.11)

Proof. We assume that [(z) < I(y) and we proceed by induction on I(z,y) > 1.
If [(z,y) = 1 then z <y. If either M (x) >z or M (y) <y, then (5.11) follows
immediately from the definition of a special matching. If M (z) <z <y <1 M (y)
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Figure 5.2: The B-graph corresponding to the B-regular sequence of Figure 5.1.

then, by Lemma 4.2.1, M restricts to a special matching of [M (z), M (y)]. But
it is well known (see, e.g., [11, Lemma 6.2]) that a Bruhat interval of rank 3 is
isomorphic to a k-crown for some k > 2. On the other hand, it is easy to see
that a k-crown has no special matchings if & > 4, while a 3-crown has no special
matching M satisfying M (0) < M (1). Hence [M (x), M (y)] is a 2-crown, so it is
isomorphic to Ss, and it is known (see Proposition 3.3 of [32]) that this implies
that M(z)"*M(y) € T.

Suppose now that I(z,y) > 3. From our hypotheses and (the proof of)
Proposition 3.3 of [32], we have that necessarily there exist a,b,c,d € [z,y],
all distinct, such that I(z) < I(a) < I(c) < I(y), I(z) < I(b) < I(d) < l(y),
and {7 'a,ate,cy, 27, b7 d,d 'y, a7 'd, b='c} C T. Therefore, from our

induction hypothesis, we conclude that

{M(z)"" M (a), M(a)~" M(c), M(c) ™' M(y), M(z) "' M(b),
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M (b)~' M (d), M (d)~" M (y), M(a)~' M(d), M(b)~'M(c)} C T. (5.12)

But (M(2)"'M(a))(M(a)"' M(c)) = (M(z) ' M®)(M(b)"'M(c)) # e
Hence, by Proposition 4.1.1 (or by Lemma 3.1 of [32]),

Wa,ab.e = (M ()" M(a), M (a) " M(c), M (z) "' M (b), M (b))~ M (c))
is a dihedral reflection subgroup of W. Similarly,

Wa,ab,a = (M(2) ™' M(a), M(a) "' M(d), M (x) "' M (b), M (b) ™' M(d))
and

Wh,eay = (M(b) ™ M(c), M(e) ™" M (y), M (b)~" M (d), M(d)~" M(y))

are dihedral reflection subgroups of W. But W a.6.NWa 460 2 (M (z) "t M(a),
M (z)~'M(b)). Therefore, by Remark 3.2 of [32], there exists a dihedral re-
flection subgroup W' of W such that W' O Wy 45 U Wy apa. Similarly,
W' N Whyeay 2 (M(b)"'M(e), M(b)"'M(d)), so there exists a dihedral re-
flection subgroup W' of W such that W' D W' U W, .4, (we could also have
taken W' maximal so that W'" = W'). This implies that

{M(x), M(a), M(b), M(c), M(d), M(y)} C M(z)W".

By Theorem 1.4 of [32], there is an isomorphism of directed graphs ¢ from
the graph induced on M (z)W" by the Bruhat graph of W to the Bruhat
graph of W' (considered as an abstract Coxeter system). Hence, by (5.12),
in the Bruhat graph of W' there are edges connecting ¢(M (z)) with ¢(M (a)),
&(M(a)) with ¢p(M(c)), and ¢p(M(c)) with ¢(M (y)). But W" is a dihedral Cox-
eter group, hence for any u,w € W' there is an edge in the Bruhat graph of
W' connecting u with w if and only if I"(u,w) = 1 (mod 2), where I" is the
length function of W with respect to its set of canonical generators. Therefore
(M (2)), (M (@) = 1"(p(M(a)), 6(M(c))) = "(H(M(e)), (M (y)) = 1
(mod 2), which implies that " (¢(M (z)), #(M (y))) = 1 (mod 2), and hence that
there is an edge, in the Bruhat graph of W connecting ¢(M (x)) with ¢(M (y)).
But ¢ is an isomorphism of directed graphs, so there is an edge in the Bruhat
graph of W connecting M (z) with M (y), and (5.11) follows. O

We can now prove that the B-graphs of lower intervals of a Coxeter system
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are always directed subgraphs of the Bruhat graph.

Corollary 5.2.2 Let vy,...,v. € W and M; be a special matching of [e, v;] for
i=1,...,7. Let x € W be such that M. M,_1--- Mo My Ms --- M,_1 M, (x) is
defined. Then

e "M My_y - MoMyMs -+ M,_1M,(z) € T. (5.13)

Proof. We proceed by induction on 7 > 1, the result being clearly true if
r = 1. So assume that » > 2. From our hypothesis, it follows that the compo-
sition M,_q--- MaMiMs--- M,_1(M,(z)) is defined. Hence, by our induction
hypothesis, M, (z) M, _y--- MoM;Ms--- M, 1(M,(z)) € T. Therefore, by
Theorem 5.2.1, = ' M, M,_y -+ MoM{Ms -+ - M,_M,(z) € T. O

An important consequence of Corollary 5.2.2 is the following result, which
in the case that the B-regular sequence (Mj,..., M;) comes from a reduced

decomposition is a consequence of the Exchange Property.

Proposition 5.2.3 Let v € W, (My,...,M;) be a B-regular sequence for v,
and y € [e,v], j € [l] be such that M;(y) is defined. Then the following are

equivalent:

i) M;(y) >y;

ii) My--- Mj(y) > Mp--- M (y).

Proof. Assume first that i) holds. We will prove, by induction on k, that
M- Mj(y) > My -+ My (y) (5.14)

for k =0,...,1 —j. If k = 0 then (5.14) is true by our hypothesis i). So let

k > 1 and assume, by induction, that
a:= Mjpp—1-+ Mj(y) > Mjpp—1--- Mjpi(y) :==b. (5.15)
Note that
Mjir(a) = My« Mjpa MjMjyy -+ My (M4 (D))

Therefore, by Corollary 5.2.2, M ;(a) and My (b) are comparable in the
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Bruhat order. Hence, to prove (5.14), it is enough to show that

UMjir(a)) > U(Mjtr(D)). (5.16)
Suppose, by contradiction, that

H(Mj1(a)) < U(Mjp(0)). (5.17)

From (5.15) we have that I(a) > I(b). This, together with (5.17), forces that b<ia
and this implies that M (b) = a, since M, is a special matching. Therefore

M (b) = Mg Mja MjMjyq - - - M1 (D)

and this contradicts the hypothesis that (M, ..., M;) is a B-regular sequence.
This proves (5.16) and hence (5.14) and concludes the induction step.
Assume now that i) does not hold, i.e. M;(y)<ty. Then M;(M;(y))> M;(y).

Hence, by what we have just proved
My - MiM;(y) > M; -~ Mj M;(y)

so ii) does not hold. O

Note that the above proposition does not hold if (Mjy,..., M;) is regular
but not B-regular. For example, let W = &(5), v = 32154, (M;,...,My) =
(p2, p1,p4, 1),y =e, and j = 2. Then (M, ..., M,) is a regular sequence for v
and Ms(e) > e but MyMsMs(e) = 12354 # 21354 = M4 M;(e).

We can now prove the main result of this section, which gives a bijection
between subsequences of a B-regular sequence and certain paths in the B-graph
of [e,v]. The result is new even in the case that the B-regular sequence comes
from a reduced decomposition. Recall the definition of 7, dy(S,1) and d2(S)

from Section 5.1.

Theorem 5.2.4 Let v € W and (My,...,M;) be a B-regular sequence for
v. Then there is a bijection between subsets S of [I] and (undirected) paths
A = (zg,x1,...,%5) in the B-graph of [e,v] such that o = v and A(zg,z1) <
Mz, 22) < -+ < Mxs—1,Ts). Furthermore:

i) 1(A) = 1-|s];

il) z; = 7(S);
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i) 40 (S,0) = |{i € [s]: zio1 < zi}];

iv) dao(S) = 5(1 = U(zs) = U(A)).

Proof. For S = {i1,...,ix}< C [l let {ji,... js}< =[]\ S and
i := Rj; --- Rj, Rj, (v)

for i =0,...,s, where R; := M;---M;--- M for i € [l]. Then z; = Rj,(x;_1)
and hence A(z;—1,z;) = j; for i € [s]. Clearly s =1 —k and

i = Ry ---R,R;,M;---Me)

— Ml...M].i...sz...]\/jjl...Ml(e)

= Ml"‘MJiH(y),

where y = w(S N [j; — 1]), for each i € [s]. Hence x5 = m(S) and, for i € [s],
zi—1 < xz; if and only if

R (zi) = My--- My, (y) < My Mji11(y) = @i
which, by Proposition 5.2.3, happens if and only if
M;,(y) <y

namely if and only if €, (S) = 1. This proves iii).
Finally, by ii),

l(zs) = k=2{ac[k]: MM;,_, - M(e) A M;,_, - M;(e)}|
= k-2 &,(9)
a€lk]
= k—2dy(9).
It is clear that this map S — (zo,z1,...,2s) is a bijection. O

Combining Theorems 5.2.4 and 5.1.4 we obtain the following result.

Corollary 5.2.5 Let v € W, and (M,...,M;) be a B-reqular sequence for v.
Then, for all u < v,
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where A runs over all the directed paths u = xs — ... = Ty — L1 — Tog = v in
the B-graph of [e,v] such that AN(zo,x1) < Mx1,22) < ... < AMzs5-1,25). O

In the case that the B-regular sequence comes from a reduced expression
Corollary 5.2.5 is closely related to (but not implied by) Corollary 3.4 of [33].

We illustrate Corollary 5.2.5 with an example. Consider the B-regular se-
quence (M, ..., Ms) illustrated in Figure 5.1. Then by Corollary 5.2.5 we can
“read off” from the corresponding B-graph (Figure 5.2) that, for example,

Rew(q) = ¢® +2¢° + ¢,

corresponding to the directed paths from e to v having sequences of labels
(5,4,3,2,1), (5,3,2), (4,3,1) and (3).

Combining Theorem 5.2.4 with Corollary 5.1.9 we obtain the following result,
which appears to be new even in the case that the B-regular sequence comes

from a reduced decomposition.

Corollary 5.2.6 Let (W,S) be a nonnegative Coxeter system, v € W, and
(M, ..., M;) be a B-regular sequence for v. Then there is a subset £ of the set
of (undirected) paths A = (xo,x1,...,2ya)) in the B-graph of [e,v] satisfying
ro = v and AN(2o,71) < M@1,72) < - < M@ya)y—1,Ty(a)), such that

P.y(q) = Z q%(l(u,v)H(A)—m(A))
{A€E: zyay=u}

for all uw < v, where d(A) = |{i € [[(A)] : zi—1 > z;}|. O

Note that the subset £ can be determined using the algorithm in Section 5.1
and Theorem 5.1.8.

5.3 R-regular sequences

In this section we generalize to a combinatorially invariant setting what is prob-
ably the most explicit non-recursive formula known for Kazhdan-Lusztig poly-
nomials which holds in complete generality, namely Theorem 7.3 of [14]. In
the following two subsections we introduce the preliminary results that will be
needed in the third subsection.
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5.3.1 Reflection orderings

Let (G, S) be any Coxeter system. Following [33] we say that a total ordering <
of the set of reflections T of G is a reflection ordering if, for any dihedral reflection
subgroup (G', {a, b}), where a, b are the canonical generators of G', we have that
either a < aba < ababa < -+ < babab < bab < bor b <bab < - < aba < a. It
can be proved that such orderings always exist (see [33]).

Let < be a reflection ordering, and s € S. We define a total ordering <?*
on T as follows. For t1,ty € T we set t; <° t5 if and only if either one of the

following conditions apply:
1. t1,t2 < s and t; < to;
2. t1,ta > s and sty s < stas;
3. t1 <5<ty
4. ty = s.

Similarly, we define < by letting t; <, - if and only if either one of the following

conditions is satisfied:
1. 11,12 < s and st1s < stas;
2. t1,ta > s and t; < ta;
3. t1 <5 <t
4. t1 = s.

It can be proved (see Poposition 2.5 of [33]) that these orders are well-defined
and that they are still reflection orderings. Note that

(=) =< (5.18)

5.3.2 Chains and lattice paths

For j € Q we define an operator L; : Clg] — C[g] by letting

Lj(Zaiqi) = Z a;iq'.

i>0 0<i<j
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Following [14], given a chain C = 29 < 21 < --- < z,, in W of length I(C) :=n,
we define
Ry, .z (q) = Rygzy (q)L% (Rxl,...7zn (q))7

where d :=I(z1,x,), if n > 2 and

Ry,....zn (q) :== Ry 2., (9),

if n = 1, where the right-hand side is the usual R-polynomial. The polynomial
R,z (@) is called the R-polynomial of the chain 2o < 1 < -+ < . The
following result appeared in [14, Theorem 4.1] and is a non-recursive formula

for Kazhdan-Lusztig polynomials in terms of the R-polynomials of a chain.

Theorem 5.3.1 Let W be a Coxeter group and u,v € W, u < wv. Then

Pu,v(Q) - ql(u’v)Pu7v(q71) = Z (_1)I(C)RC(‘1)’
ceC(u,v)

where C(u,v) is the set of all chains from u to v.

Recall that a composition of n € P is a sequence (ai,...,as) (for some s €
P) of positive integers such that a; + ...+ as = n. When writing compo-
sitions we will sometimes omit to write the parentheses (i.e., we will write
ay,...,a, instead of (ai,...,as)). For n € P we let C,, be the set of all
compositions of n and C' := J,~, Cn. Given § € C we denote by I(§) the
number of parts of 3, by £, for i = 1,...1(B), the i-th part of 8 (so that
B = (Bi,fas- -, Bus)), and we let 8] == 3210 Bi, B = (B2, Bs,- .., Bs)) (if
1(B) > 2), B :== (Bugys---» B2, 81), T(B) := {Br, Br + Br—1,.--, Br + ... + B2}
where r := [(8). Given (aq,...,as),(B1,...58:) € Cp, we say that (ai,...,as)
refines (B1,...0;) if there exist 1 < 43 < ip < --- < i4—1 < s such that
Z;’;ik&H aj = P for k =1,...,t (where i := 0, i; := s). We then write
(a1, 0a5) <o (B1,-..0:). Tt is easy to see that the map 8 +— T(8) is an iso-
morphism from (C),, <.) to the Boolean algebra of subsets of [n — 1] ordered by

reverse inclusion.

Let n € N. By a lattice path of length n we mean a function T': [0,n] — Z
such that I'(0) = 0 and
IT(E) -T@GE-1)|=1
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for all i € [n]. Given such a lattice path I we let
NT):={ien-1]:T@) <0},

do (D) == |{i €[0,n —1]: T + 1) — T(3) = 1}],

I(T) :=n, and I'>g :=[(T') — 1 — |N(T)|. We call N(T') the negative set of T,
and [(T) the length of T'. Note that n ¢ N(I') and that

L(n)+n

a.(r) = =2

(5.19)
Let £(n) denote the set of all lattice paths of length n. Given S C [n— 1] we let
H(S,n):={T € L(n): N(T') D S},

and
E(S,n):={C e L(n): N(T')=S}.

For a € C,, we define two polynomials ¥, (q), T, (q) € Z[q] by letting

Vo) = ()" Y (g™, (5.20)

reH(T(a),n)

and

Tolg) == (—1)" 1@ Z (—q)%+ D).

reE(T(a),n)

Note that the definitions imply that

a<.B

Hence, by the Principle of Inclusion-Exclusion,

Ta(g) = Y (=) W,(g). (5.21)

a<.j3

The next result gives the R-polynomial of a chain in terms of the usual R-
polynomials and its proof can be found in [14, Proposition 7.1].
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Proposition 5.3.2 Let xg < 1 < ... < x, be a chain in W. Then
I(zg.25)=la] - ~
Rogwn@= > a = Tale) [[[e* 1R, ,.c,)- (5.22)

aEPn r=1

5.3.3 Poset theoretic formula

Let v € W, and M := (M,..., M;) be a regular sequence for v. We denote
by Pa the set of palindromes in the alphabet {M,...,M;}, i.e. words of the
form M;, -+ M;, _ M; M;, _, -+ M;, with iy,...,4; € [I[]. We say that M is a

i1
reflection regular sequence, or simply an R-regular sequence, for v, if:

i) for p1,ps € Pu, if p1(uo) = p2(ug) for some ug € [e,v] then p; (u) = pa(u)
for all u € [e,v] for which both sides are defined,;

ii) for p1,pa,...,pn € Puy, if p; and p;11 coincide on a point, for each i =
1,...,n — 1, then p; and p, coincide where they are both defined;

iii) M admits a reflection labeling.

We now define reflection labelings. Define an equivalence relation ~ on Py by
letting py ~ po if there exists ug € [e, v] such that p; (ug) = pa2(up) and taking the
transitive closure. Note that this is stronger than requiring that pi (u) = p2(u)
for all u € [e,v] for which both sides are defined. We denote by Rpaq := Pag/ ~
the quotient set. If p € Py we let p be the corresponding class in Raq. Note
that, for each i,j € [I], M; = M; if and only if M;(e) = M;(e). Therefore, by
Lemma, 5.1.1, we may identify {M; : i € [I]} with the set of atoms of [e,v]. We
say that an element r € Ry is defined on some u € [e,v] if p(u) is defined for
some p € r. In this case we write r(u) := p(u). Now let (W', S’) be another
Coxeter system and T' be its set of reflections. A reflection labeling of R in
(W', 8")is amap L : Rypg — T such that:

a) {L(M;) i €[]} = S

b) L(M;, -+ M;, -
[1];

c) If 71,72 € Raq, 71 # T2, are both defined on some u € [e,v] then L(ry) #
l;(TQ).

MZI) = L(Mll)L(Mlk)L(Mh) fOI' all il?"'7ik E

In particular |S’| equals the number of atoms of [e, v].
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It is not hard to see that R-regular sequences always exist. In fact, if v =
s1-+- 8 is a reduced expression for v then M := (p1,..., p;) is clearly a regular
sequence for v satisfying i) and ii). If we denote by W' the parabolic subgroup
of W generated by {s; : i € [I]} and by T" its set of reflections, then the map L :
Py — T' defined by p;, - -~ pi, -+ piy &> Siy - -~ S84y, - - - 8iy clearly factors through
R to a reflection labeling. Similarly for (A, ..., A1). Thus, the concept of an
R-regular sequence is a generalization of that of a reduced decomposition.

Although this is not obvious from the definition, an R-regular sequence is

also B-regular.

Proposition 5.3.3 Let v € W and M be an R-regular sequence for v. Then
M is B-regular.

Proof. Let M := (My,...,M;) and fix i € [|]. We will show that
M;i(x) # My~ M-+ M;_1(x)

for all k € [{—1] and all z € [e, v] for which both sides are defined, and the result
will follow from the remarks following the definition of a B-regular sequence in
Section 5.2.

Suppose, by contradiction, that there are z € [e,v] and k € [i — 1] such
that M;(z) = M;—1 -+ M;_--- M;—1(z). Since M is R-regular this implies, by
condition i), that M;(y) = M;_1--- M;_--- M;_1(y) for all y € [e,v] for which
both sides are defined. Let (vo,...,v;) be the regular chain associated to M.
Then, in particular,

v = Mi(vi1) = Mi_q -+ Mi_p -~ My (vim1) = My -+ M1 (Vimg—1)-
Therefore
i=1(v;) =U(Mi—1- Mi—pp1(Wi—p—1)) <U(vi—p—1)+k—-1=10-2,

which is a contradiction. O

Note that the converse of the above proposition is not true. For example, let
W = &(4) and v = 3421. Then it is easy to check that M := (pa, p3, p2, A1, A2)
is a B-regular sequence for v. However, M is not R-regular since p2(e) = Az(e)
but p2(1243) # A2(1243), so condition i) does not hold.

If L: Ry — T is a reflection labeling and < is a reflection ordering on T

we write, for brevity, <’:=<"(") and <i==ra1)-



5.3 R-regular sequences 133

Let w € W, M an R-regular sequence for v, and L : Ry; — T’ be a reflection
labeling. We define a labeled directed graph, that we call the R-graph of [e, v]
with respect to M, as follows. The R-graph has [e, v] as vertex set and, for any
z,y € [e,v], x — y if and only if I(y) > I(z) and y = r(x), for some r € R4.
Note that, by Corollary 5.2.2, the R-graph is a directed subgraph of the Bruhat
graph.

If A= (zg =% 1 = -+ =% 1) is a path in the R-graph we write
E(A) :={ry,...,r;} and if < is a reflection ordering on T" we let

D(AL,<):={ie[k—1] : L(r;) = L(rix1)} (5.23)
Finally, we define an element R~ in the incidence algebra of [e, v] by letting

Re(o,y) i= ) ¢

{AeB(z,y):D(A,L,<)=0}

where B(z,y) denotes the set of all paths in the R-graph from z to y.
We can now prove the first main result of this section. It is a “global version”

of Corollary 5.2.5 and generalizes Corollary 3.4 of [33].

Theorem 5.3.4 Letv € W, M = (M,...,M;) be an R-reqular sequence for
v, L: Ry = T be a reflection labeling and < a reflection ordering on T'. Then

Emy(q) =R (:L”, y)

for all z <y <w.

Proof. We proceed by induction on [(y) the statement being trivial for I(y) = 0
Assume that I(y) > 0. By Lemma 5.1.1 there is 4 € [I] such that M;(y) <y.
Let, for brevity, M := M;. For all 2',y’ <y we let

f—<($layl) = Z ql(A)

A€EB;(z'y")

and

9< (xlayl) = Z ql(A)a
AeBi(ay')
where B;(z',y") := {A € B(z',y') : L(M) < L(E(A)) and D(A,L, <) = 0}
and Bi(z',y") := {A € B(2',y") : L(M) < L(E(A)) and D(A,L,<") = 0},

where <':=<L (M)
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We claim that

f<(zy) = { 9<(Mz, My), if Mz <z, (5.24)

g-<(anMy) -|-qg<(a?,My), otherwise,
and

(anMy)+Q(g-<(x7My)_f-<(x7My))7 ifMCL‘Q{L‘,
(Mz, My) + q9<(z, My), otherwise,
(5.25)

g<(z,y) = { ;j

where, for all z <y, we write Mz instead of M (z).

We prove only the cases Mz <z in equations (5.24) and (5.25), the cases
Mz > x being similar. So suppose Mz < z.

Let A = (29 —% 21 —> --- = ) € Bj(z,y). Then M ¢ E(A) and the

M M M .
path A’ = (Mzg = Mazy —2 ... 225 Muay), where rM := MpM for some
(any) p € r belongs to Bi(Mz, My). Conversely, every path in Bj(Mz, My)

arises in this way as it cannot have labels M since M (y) < y. This proves the
case Mz <z of (5.24).

Now let A = (zo = 1 — --- % x3) € Bi(z,y). If M € FE(A) then
necessarily M = r. Hence A’ = (2o — 21 —2 -+ =53 24_4) € Bli(z, My).
Furthermore, every path in Bj(xz, My) cannot have M as a label and hence
arises in this way from a path A € B!(z,y) such that M € E(A). So

> ¢ = qg<(x, My). (5.26)
{AeB(z,y) ‘MeE(A)}

N rM rM rM
If M ¢ E(A) then A' = (M2zy = Mz - --- =% Muzy) € Bi(Mx, My).
Moreover, any path A’ € B;(Mz, My) with M ¢ E(A') arises in this way.
Hence

3 ¢ = f_(Mz, My) — 3 ¢ (5.27)

{AEB!(z,y):MgE(A)} {A€B; (Mz,My):McE(A)}

Now let A = (zg - x; 2 --- % 2,) € By(Mx, My) be such that M €
E(A). Then necessarily M = r; and hence A" = (z; -2 25 —25 --- 25 21) €
B;(x, My). Furthermore, every path in B;(z, My) cannot have M as a label and
hence arises in this way from a path A € B;(Mxz, My) such that M € E(A).
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Therefore

> ¢'®) = qf<(, My)

{A€EB;(Mz,My):MeE(A)}

and this, together with (5.26) and (5.27), concludes the proof of the case Mz <z
of (5.25).

Now let

h(z,y) = 3 @,

{A€B(z,y):L(E(A))<L(M),D(A,L,<)=0}

Then it is clear that
R< = h<f< and R</ = h<g< (528)

in the incidence algebra of [e, y]. We claim that f<(z,y) = g<(z,y) for all z < y.
In fact, by (5.28) and our induction hypothesis we have that

f<(z,My) = (h""R2)(z,My) = (h" 'R<)(2, My) = g<(2, My)  (5.29)

for all z < My and the claim follows by (5.24) and (5.25).
Therefore, by (5.28), we have

R (ZL',Z/) = R<r($,y)

and, since (<;)? =<?
Ry (z,y) = R (z,y).

Now notice that f-.(z,z) = R, (z,2) for all 2,z < y (since L(M;) <; L(E(A))
is an empty condition) and hence, by (5.24) and (5.29)

R, (Mz, My), if Mz <z,

Rs(z,y) =
«(@y) { R.,(Mxz,My) + qR<,(z, My), otherwise,

and the thesis follows by Corollary 0.5.3 and our induction hypothesis. [

Now fix v € W, an R-regular sequence M for v, a reflection labeling L :
Ry — T' and a reflection ordering < on T'. Let A € B(z,y), where z <
y < v. We define the descent composition of A with respect to < to be the
unique composition C(A, L, <) := (b1, ..., b;) such that by +...+b; =I(A) and
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D(A,L, <) = {b1,by +ba,...,01 +... +bj_1}.
For z,y <wv, and a € C, we let

co(z,y) = {A € B(z,y) : I(A) =|al and C(A,L, <) >, a}, (5.30)
and

bo(z,y) := |{A € B(z,y) : I(A) =|a| and C(A, L, <) = a}|. (5.31)
Note that these definitions imply that

ca(,y) = Y ba(z,y) (5.32)

B2eca

for all z,y < v and a € C, and that
ca(,y) = ba(z,y) = {A € B(z,y) : I(A) = |aJand D(A, L, <) =0} (5.33)

if l(a) = 1.
The proof of the following result is analogous to that of Proposition 4.4
of [13] and is therefore omitted.

Proposition 5.3.5 Let x <y <wv, and a € C. Then

@y = S TRy

(Toywswr) ECH (2,y) J=1

where Cy.(z,y) denotes the set of all chains of length v from x to y, and r :=
() O.

We can now state and prove the second main result of this section, which
generalizes the main result of [14] (Theorem 7.2). Recall the definition of the
polynomials ¥, (q) and Yz(g) from Subsection 5.3.2.

Theorem 5.3.6 Let v € W, M be an R-reqular sequence for v, L : Ry — T
be a reflection labeling and < be a reflection ordering on T'. Then, for all

z<y<uv

a: 1 1z.y) —1(A)
Px,y(‘]) - ql( ¥) Pz,y <_> = Z q 2 TC(A,L,<)(Q)- (5'34)
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Proof. From Theorem 5.3.1 and Propositions 5.3.2 and 5.3.5 we have that

Ppy(@) - @ P, (%) S (O Re(g)

CeClz,y)

(z,y)—|o|
S (=) g Wa(g) calx,y).

aeC

On the other hand, from (5.32) and (5.21) we obtain

S ()@ B alzy) = 3 (D@ wa() 3 by

acl, acl,

> bsla,y) > (-

BECH a=<.8

= > bs(z,y) Ys(a),

BECH

B ca
e

Va(q)

for all n € P. Therefore we conclude that

" 1 Uz.y) =8|
Py y(q) — ¢V Py, <5> =Yg = Ys(q) bs(z,y),

BeC

which, by (5.31), is equivalent to (5.34). O

In the same way as Theorem 7.3 is deduced from Theorem 7.2 in [14] one
obtains the following result from Theorem 5.3.6 . Given n € Z and A C 7Z we
let n —A:={n—-a: a€ A}. Recall our notations concerning lattice paths
from Subsection 5.3.2..

Corollary 5.3.7 Let v € W, M be an R-regular sequence for v, L : Ryq — T'
be a reflection labeling and < be a reflection ordering on T'. Then, for all
z<y<o,
Poylg) = Y (1)l zotds (Mg Rttt
(T,A)
where the sum is over all pairs (T, A) such that T is a lattice path, A € B(z,y),
I(T)=1(A), NT)=1(A) — D(A,L, <), and T(I(T)) < 0. O






Chapter 6

Special matchings of &(n)

form a Coxeter group

The proof of Lusztig’s conjecture for lower Bruhat intervals (Corollary 4.4.8)
uses the fundamental concept of special matchings of a partially ordered set,
and follows from the study of all possible commutation relations between two
such matchings. In this chapter we study with much more detail the relations
between special matchings of intervals of the form [e, v], where v € &(n). In fact,
the main result of this chapter (Theorem 6.2.1) is that all the possible relations
between special matchings are consequences of the commutation relations among
them. Or, which is the same, it states that the group W\v generated by the set
S, of all the special matchings of a permutation v is again a Coxeter group with
S, as set of Coxeter generators. Furthermore the Coxeter system (W,,S,) is
isomorphic to a direct product of symmetric groups.

6.1 The commutation graph

We start this section with two technical lemmas that will later be needed.

Lemma 6.1.1 is in the spirit of Lemma 1.1.1.

Lemma 6.1.1 Let (W,S) be any Coxeter system and let J, K C S with J N
K = 0. Suppose that w = wjwg, with w; € Wy and wy, € Wk, and that
sj € JN Dg(w). Then s; € Dr(w;) and s; commutes with every letter in wy,.

139
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Proof. We proceed by induction on I(wy,), the assertion being clear if I(wy) = 0.
So suppose I(wy) > 1 andlet s € Dr(wyg). By the Lifting Lemma (Lemma 0.3.4),
sj € Dr(ws), and we can consider the factorization ws = w; wys, with (wgs) <
l(wg). So, by induction hypothesis, s; commutes with every letter in wys,
namely with every letter in wj, except at most s. Suppose, by contradiction,
that s; does not commute with s. By Lemma 0.3.5, w admits a reduced expres-
sion of the form w'a; s, where ay s, has more than two letters. Hence s < ws
and this forces s < wygs; but this is a contradiction because we have already
proved that s; commutes with every letter in wys. O

Clearly, a dual version of Lemma 6.1.1 holds.

Lemma 6.1.2 Let (W, S) be any Cozeter system, and let w € W and K C S.
Suppose that s € D, (w) but s ¢ K. Then s € D, (¥w).

Proof. Recall the factorization of Proposition 0.3.7: w = wx Kw. We proceed
by induction on [(wgk), the assertion being clear if I(wg) = 0.
Suppose [(wg) > 1 and let s’ € Dy, (wg ). By the Lifting Lemma (Lemma 0.3.4),

Kw, with

s € Dp(s'w), and we can consider the factorization s'w = s'wg
I(s'wg) < l(wg). So, by induction hypothesis, s € D, (¥v). O

Clearly, a dual version of Lemma 6.1.2 holds.

We also need the following result about the length of dihedral intervals in

the symmetric group.

Proposition 6.1.3 Let u,v € S(n), u < v, be such that the interval [u,v] is
dihedral. Then l(u,v) < 3.

Proof. By Lemma 4.1.1 it follows that the group W' generated by the set of
reflections {ab™! : u < a <1b < v} is a dihedral reflection subgroup. By The-
orem 1.4 of [32], it follows that the interval [u,v] is isomorphic, as a partially
ordered set, to a subset of W'. The statement follows since dihedral reflections

subgroups of the symmetric group are of length at most 3. O

Remark. In general, Proposition 6.1.3 can be false even if all the entries of
the Coxeter matrix are < 3. A counterexample can be found even in Zg, the
Coxeter group of Coxeter generators si, s2, s3 with m(s;,s;) = 3 for all i # j.

In fact, for example, [s15253, $2515382518382] is a dihedral interval of length 4.



6.1 The commutation graph 141

From now on we call a dihedral interval of length 1, 2 and 3 respectively a

segment, a square and a hexagon.

Proposition 6.1.4 Letv € &(n), M and N be two special matchings of v, and
let ug < w.

1. If (M,N)(ugp) is a hexagon then (M, N)(u) is a hexagon for all u < wv.

2. If (M, N)(ug) is either a segment or a square then (M, N)(u) is a segment

or a square for all u < wv.

Proof. Actually 1. and 2. are equivalent by Lemma 4.2.2 and Proposition 6.1.3.
Let us prove 1.
With no lack of generality, we can suppose that ug is the top element of an
orbit. We first prove the statement for u < ug by induction on I(ug). Suppose
that there exists uy < wg, u1 ¢ {M(uo), N(ug)}, such that v < wy. Then,
by Proposition 4.2.3, (M, N)(u;) is a hexagon and we can conclude by our
induction hypothesis. If such u; does not exist, by Corollary 4.1.3, [u,v] is a
dihedral interval containing M (ug) and N(up). Then, by Theorem 4.1.2 and
Proposition 6.1.3, u € (M, N)(up) and we are done. In particular we have that
(M,N)(e) is a hexagon. An upside-down argument with uy = e shows that
(M, N)(u) is a hexagon for all u > e and the proof is complete. O

Now we can conclude that the commutation rules of special matchings really

look like the Coxeter relations for the symmetric group.

Corollary 6.1.5 Let v € &(n), M and N be two special matchings of v. Then
either MN = NM or MNM = NMN.

Proof. It is straightforward by Proposition 6.1.4. [

Now we focus our attention to non-commuting pairs of special matchings.
To see that two special matchings M and N do not commute it is enough to
check that M N(e) # NM(e), by Proposition 6.1.4. It follows that any special

matching does not commute with at most 4 other special matchings.

special matchings | does not commute with

i Xiets Aigts i1, Tig
pi Pi—1, Pit1, Tim1, lit1
l; Tic1y Titl> Nitl, Pie1

i lici, Liv1, Aoty pita
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We shall see that the situation is actually much simpler. We define the commu-
tation graph of the special matchings of v to be the graph G = (V, E) where V
is the set of special matchings of v and E is the set of non-commuting pairs of
special matchings. For what we have proved so far, if v € &(7), its commutation
graph can be obtained from the graph in Figure 6.1 by deleting some vertices
and the corresponding adjacent edges. Note that the special matchings Iy, Ig,
r1, and rg do not appear in this graph since they are necessarily also of type A

or p.

A1 p1
Ao G r2 I ) P2
I3 T3
A C ) pa
A1 G r4 Iy ) P4
l5 Ts
s G > ps
A6 Pe

Figure 6.1: Special matchings in &(7)

Lemma 6.1.6 Let v € &(n).

1. If l;, ri11 are both special matchings of v, then v = v's;8;118;, with v’ €

S(n)s\{i,i+1}-

2. If r;, liz1 are special matchings of v, then v = s;s;1180", with v" €

S(n)s\{i,i+1}-

Proof. We prove only 1. because 2. is its dual statement.

Let u € [e,v] be such that I;(u) > u and r;+1(u) > u. We show that s;11 £ u.

J,

Let J := [i] and K := [i,n — 1], and decompose v = wuj “u, where, by Corol-

lary 0.7.5, 7u € &(n)x. We have s; 115,42 £ 7u, otherwise s;5;115;42 < li(u) <
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v which contradicts 2. of Corollary 0.7.4. Hence, if s;;; < “u, we have that
Tu = uysipius with uy € &(n)iv2,n—1] and uz € &(n)g3. So u = uy Ju =
wgu1 s;+1uz and hence, by Corollary 0.7.5, 711 (4) = ©1 84145 8;11u2 which im-
plies s;8;_1 % wuy, by Corollary 0.7.4. Since I;(u) > u this forces s; £ uy and
hence r;11(u) < u.

A symmetric argument shows that s; £ u.

Note that, since (I;, r;11)(e) is a hexagon all the orbits of the group (I;, riyr1)
are hexagons by Proposition 6.1.4. Suppose u is the bottom element of the
hexagon containing v so that v = l;7;111;(u). We know that u = wjus with
u; € &(n);—1] and uz € &(n)[i42,,—1]- Then

v o= Lirigli(u) = Lirig (uisiuz) = Li(uzsipius;)

U1S;U2Si4+15; = U1U2S;Si4+15;

and we are done. [
Theorem 6.1.7 Let v € G(n).

1. Ifl; and riy1 are two special matchings of v then

[;0————0rit1
is a connected component of the commutation graph of the special match-
ings of v.

2. If r; and l;y1 are two special matchings of v then

rio—0 ;4

is a connected component of the commutation graph of the special match-

ings of v.

Proof. We prove only 1. because 2. is its dual statement.
Figure 6.2 shows all possible neighbors of the special matchings /; and r;4; in

the commutation graph (see Figure 6.1).

Recall that, by Lemma 6.1.6, v = v's;s;115;, with v' € &(n) g\ fi,i413-
If X\i11 is a special matching of v then, by Lemma 6.1.1, s;4» £ v which forces
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Ait1 Pi+2
) @)

I I
I I

| |
l; Ti41
7"1'710----(5—6) ----0liy2

I I

I I

I I

I I
O O
pPi-1 Ai

Figure 6.2: Neighbors of I; and ;41

Ait+1 = rip1. If \; is a special matching of v then, by Lemma 6.1.1, s;—1 £ v
which implies \; = [;.

Again by Lemma 6.1.1, we have that p;_; and p;y» are not special matchings
of v.

Let us check that [;;2 and ;1 are not special matchings of v. We show it for
li12, the same argument being valid also for r;_;. Suppose, by contradiction,
that l;12 is a special matching. By 2. of Lemma 6.1.6 we have that v =
v'sit15i425i41 and v = 5185428110, with v',0" € &(n)s\fit1,i423- But
these two decompositions of v are incompatible, since from the second we have
i+1 € D (v) which forces, from the first decomposition, s;+2 £ v'. But this is
a contradiction with the second one. O

We go on in our analysis of the commutation graph by showing another
forbidden configuration.

Theorem 6.1.8 Let v € &(n).
1. The configuration

Aj—1 Tj Pj+1
o o)

is forbidden in the commutation graph of the special matchings of v.

2. The configuration

Pj-1 L Ajt1
O O

is forbidden in the commutation graph the special matchings of v.
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Proof. We prove only 1. because 2. is its dual statement.
By contradiction, suppose that Aj_i,r; and p;;1 are all special matchings of
v. Let J = [j] and K = [j,n — 1], and decompose v = vx Xv. We claim that
s;i £ Kv. In fact Kvsjp ¢ KW since KW nle,v] € Wy nNe,v] by 2. of
Corollary 0.7.5. Then, by the definition of KW, there exists k& € K such that
k € Dr(Kvsji1). Necessarily k=j or k=j+1as Ko e Wj.

If £ = j we have

K’US]'+1 Sj K’U

K,
S USj41 v

By the lifting lemma (Lemma 0.3.4) we should have Kvs; 11 = s; Kv. But
this is not possible since s;+1 £ s; Kv.

If k =j + 1 we have that
K

K,
NU

K
Sj+1 " vsjp1 Ky

and hence, by the lifting lemma, Kvst = 5j4+1 Ky which implies that sj % Ky
by Lemma 6.1.1. So the claim is proved.

A similar argument applied to v~! and to J, together with Corollary 0.7.5,
provides that either s; £ vg or vg =v's; with s; £ v’. But since r; is a special

matching of v we must be in the last situation. So we have

v=1uv's; %v
with v’ € Wijt1,n—1) and Ky e Wj—11- All these conditions are in contradiction
with Lemma 6.1.1 (e.g. apply Lemma 6.1.1 to j + 1 € Dg(v)), and the proof is
complete. O

The next result shows us how a connected component of the commutation

graph looks like.

Theorem 6.1.9 Letv € &(n). Let A, Aj11,...,A; with j > i be special match-
ings of v and suppose that A\;_1 and \j;1 are not special matchings of v. Then

their connected component in the commutation graph is a subgraph of
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Ai
li1
Ait1
>‘j Tj+1
Dually, if p;,...,p; are special matchings of v and p;—1 and pj41 are not, then

their connected component in the commutation graph is a subgraph of

Pit+1

Lig Pj

Proof. We only prove the first statement.

Observe that if Ay, A\p+1 and ryq are special matchings of v for some k then
Tk+1 = Apt1- In fact, if £,k +1 € Dy (v) then, by Lemma 0.3.5, v = s8k415,0'
with [(v) = I(v") + 3. But then, if r¢41 is a special matching of v, we have
Sk42 £ v', otherwise sgsp41Sk+2 < v, which is not possible by Corollary 0.7.4.
Hence ri41 = Agg1. Similarly, if A, Axy1 and [ are special matchings of v for
some k then [, = \j.

Now we look at the possible neighbors of \; in the commutation graph. If [;_;
is not a special matching there is nothing to prove, because J; is adjacent only
to Ajy1. If ;1 is a special matching, r;_» and r; cannot be special matchings
of v by Theorem 6.1.7, and p; o cannot be a special matching of v by 2. of
Theorem 6.1.8. The analysis of the commutation graph around JA; is similar
and it is left to the reader. O
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Example. Let, for 3 <i<j<n—-3,v=s;_25j42w where w is the longest
element in the parabolic subgroup Wi; ji1;. Then

i
li1

Aig1

-
1
Aj

is actually a connected component in the commutation graph of the special
matchings of v.

Our next goal is to understand if there is any further relation among the
special matchings of a permutation v, other than the commutation relations.
In other words we want to understand if the group generated by the special
matchings is the Coxeter group whose Coxeter diagram is our commutation

graph or a proper quotient of it. We will see that there are no further relations.

Lemma 6.1.10 Let ¢ < j. Suppose that
Ai
li—1

Ait1

Aj

is a subgraph of a connected component of the commutation graph. Then the
other connected components having at least a special matching indezed in [i—1, j]
do not have vertices with index smaller than i — 1.

Clearly, dual statements hold if we change the subgraph with one of the following



148 Chapter 6. Special matchings of &(n) form a Coxeter group

Xit1 Pi+1 Pit+1

Aj "t pj Lign pj

Proof. Let us check all other possible special matchings indexed by i — 1. By
the proof of Theorem 6.1.9, if \;_; is a special matching, then \;_1 =1;_1. Let
J = [i — 1] and decompose v = vy "v. Since I;_; is a special matching, we have
that s;_1 € Dgr(vy). We can assume that s;_» < vy, otherwise we cannot have
special matchigs indexed by ¢ — 2 and the result would be trivial. If r;_; is
a special matching then s;_2s;_15; f v by Corollary 0.7.4. Hence necessarily
S; ;(_ Jy. But this is in contradiction with the fact that \; is a special matching
and hence r;_; is not a special matching. So the only other possible special
matching indexed by ¢ — 1 is p;—1.

Note that the possible neighbours of p;_; indexed by ¢ — 2 are p;—» and r;_s.
But p;_2 and r;_5 are not special matchings of v because, otherwise, they would
be in the same connected component of /;_; and this is in contradiction with
Theorem 6.1.9. O

Lemma 6.1.11 Leti < j. If

i Aig1 Aj

is a connected component of the commutation graph and C is another component
with a special matching indexed by i, then this special matching is of type p orr
and if it is of type r, C' does not contain any special matching with index smaller
than 1.

Clearly, a dual statement holds.

Proof. We already know that if [; is a special matching, then it is necessarily

equal to \;. If p; is a special matching there is nothing to prove. So suppose
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that r; is a special matching. If I;_; or A;_; are special matchings, then they
would be in the same connected component of )\;, which is a contradiction; so
in the connected component of r; there are no special matchings with index

smaller than . O

We introduce an equivalence relation on the set of connected components of
the commutation graph. We say that two connected components C' and C' are
in the same isotypical component if there exists a sequence C' = Cy, C,...,C =
C'" of connected components such that, for all ¢ € [t], C;—1 and C; contain at
least one special matching with the same index. Then Lemmas 6.1.10 and 6.1.11
tells us that special matchings of type [ and r have external indices in isotypical

components.

Corollary 6.1.12 Let I be an isotypical component of the commutation graph
and suppose that all the special matchings in I are indexed in [i,j]. Then all

the special matchings of I indexed in [i + 1,7 — 1] are of type A or p.

Proof. It follows directly from Lemma 6.1.10 and 6.1.11. O

This is an example of how an isotypical component looks like.

A3
l

®)

Ay P4

As Ps

Pe
A7 O p7 O

Ag C
o—=oO
)\9 q l10 P9

A100O
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6.2 The Coxeter group /Wv

Given v € G(n), we define Wv to be the group generated by the set S, of all
special matchings of v. In this section, we analyze the structure of the group

W,. Our goal is to show that the pair (/WU, Sy) is again a Coxeter system.

Theorem 6.2.1 Let v € &(n), S, be the set of all special matchings of v and
/V[Z, be the group generated by S,. Then

(W, Sy)

is a Coxeter system isomorphic to a direct product of symmetric groups.

Proof. Let p be a word in the alphabet of the special matchings of v such
that p(u) = u for all u < v (in other words, p is the identity in W,). The result
will follow if we show that we can obtain the empty word from p using only
braid moves either of the form MNM < NMN (if M and N do not commute),
or of the form MN < NM (if M and N do commute), and nil moves of the
form MM = (). Suppose that I is an isotypical component whose set of indices
is [i,j]. Then, by Corollary 6.1.12, after commutation of some letters, we may

suppose that p = pipaps, where:

- p1 isaword in h;, Ajp1....,Aj_1, hj with h; equal to I; or A; and h; equal to
Tj Or Aj;

- po is a word in k;, piy1,-..,pj—1,k;, with k; equal to r; or p; and k; is equal
to I; or pj;

- ps3 is a word involving special matchings which are not indexed in [z, j].

It is clear that it is enough to prove our claim for p; and py, the general re-
sult following by induction on the number of isotypical components. These
conditions imply that pips = p;*. In particular we have pipx(e) = p;*(e).
But pip2(e) € &(n); ;) and p5 ' (e) € &(n)p1 i—1]ufjt+1,n—1] and hence pips(e) =
pgl(e) = e. Moreover, for all s, < v we have pips(sp) € &(n)p; jjurny and
p;t(sn) € &(n)fii—1]ulj+1,n—1]u{r} and hence pipa(sp) € {e,sx}. Since pips is
a bijection we have pypa(sp) = sp.

We firstly deal with the case i = j. Let 7 := pyps. We can clearly assume that 7
is a subword of \;p;lir; of even length, since m(e) = e. If s;—1 < v and s;41 £ v,
then I; = p; and r; = \;, so 7 is a subword of A\;p;. But \;p;(si—1) # s;—1 and
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hence 7 is the empty word. If s;_1 £ v and 5,41 < v, the proof is very similar.
If 5,_1 £ v and s;41 £ v there is at most one special matching indexed by i and
the result follows. So we can assume that s;—1 < v and s;4.1 <w. If [; is a spe-
cial matching, then [;(s;—18i+1) = Si—18:8;+1 which implies, by Corollary 0.7.4,
that r; is not a special matching. But the only subword of A;p;l; that act as the
identity on both s;—1 and s;y1 is the empty word and we are done. The other
possible cases are similar and hence are left to the reader.

So we can assume i < j, and we restrict our attention on P := &(n)(; ;1 N [e,v].
Note that for all u € P we have h;(u) = su, hj(u) = s;ju, ki(u) = us;, and
k;j(u) = us; so that we can “think” of the h and the k as, respectively, A and
p (and the commutation relations do not change!). Thus, if s;, ---s;, is a re-
duced expression of ps(€), we may obtain, using only the commutation relations,

! acts on P by multiplying on

it =X, o+ Niy, and pa = piy -+ iy, SO that py
the left by uw := s;, -+ s;, (this being a reduced expression) and py acts on P
by multiplying on the right by u. Since pa(ss) = p; *(sn) for all h € [i, j] this
implies that u belongs to the center of &(n)j; ;7. The result follows since the

center of &(n); ; is trivial. O

Example. Let v = (316425) € &(6). Then v admits the following reduced
expression v = $28351555453. One may check that the interval [e, v] has exactly
6 distinct special matchings and these are Ao, A5, p1, p3, p4,l3 and r4. Then the

commutation graph of v is

Ao

P4 © T4
oM

P3 13
OP1

and the group Wv generated by these special matchings is isomorphic to &(3)? x
6(2)%.

Remark Theorem 6.2.1 cannot be generalized to arbitrary Coxeter groups. Let
W be the dihedral group generated by a and b with m(a,b) > 4 and consider
w = abab. Then [e,w] is a dihedral interval of length 4. Consider the special
matchings in Figure 6.3.
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Figure 6.3: dihedral of length 4

Call M; the dashed matching, Ms the dotted matching, Mz the dash-dotted
matching and M, the dash-dot-dotted matching. Then MyMsMsM; is the

identity as application from [e, w] to itself but it is clearly not a Coxeter relation.



Chapter 7

Kazhdan-Lusztig polynomials

for arbitrary posets

This chapter is organized around the problem of generalizing the definition of
R-polynomials (and hence é—polynomials) and Kazhdan-Lusztig polynomials to
arbitrary posets. We find that, in a certain class of posets, the concept of spe-
cial matching leads to an entirely poset theoretic definition of Kazhdan-Lusztig
and R-polynomials. This class of posets, which we call diamonds, includes the
lower Bruhat intervals and the new definitions are obviously consistent with the
classical definitions.

7.1 Zircons

Before introducing the class of diamonds, we introduce a more general class of
partially ordered sets, which we call zircons. Given a poset P, we say that M is
a special matching of an element w € P if M is a special matching of the Hasse
diagram of {z € P : x < w}. We denote by S,, the set of all special matchings

of w.

Definition 7.1.1 We say that a locally finite ranked poset Z is a zircon if Sy,

is non-empty for all w € Z, w not minimal.

Note that, given a zircon Z with rank function p, then [{z € Z : z < w}| < 00
and l({z € Z : z <w}) < p(w) for all w € Z. Figure 7.1 shows an example of a

zircon.

153
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Figure 7.1: a zircon

Let us prove some properties of zircons.

Proposition 7.1.2 Let Z be a zircon with rank function p, and let z € Z. Then
HzxeZ:z<z} <p(z).

Proof. We proceed by induction on p(z), the cases p(z) = 0,1 being clear.
Suppose p(z) > 2. Let M be a special matching of z. By definition of spe-
cial matchings, M(z) < M(z) for all  such that = <1z,  # M(z). Thus
Hzee Z:z<z}-1<|{zr € Z:2 < M(2)}|. But by induction hypothesis,
o€ Z:za M@} < p(M() = p(z) — 1. O

Proposition 7.1.3 Let Z be a zircon, my and mso be two minimal elements in

Z. Then there does not exist z € Z such that z > m; and z > ms.

Proof. By contradiction, choose a minimal element z among those greater
than both m; and msy. By the definition of zircon, there exists a special
matching M of z. By the Lifting Lemma for special matchings (Lemma 0.7.1),
M(z) > my,ma. But M(z) < z and this is a contradiction. O

Corollary 7.1.4 Any connected zircon 7 is a graded poset.

Proof. By Proposition 7.1.3, Z has a 0. It remains to prove that, given any
z € Z,[0,z] is pure. But a finite ranked poset with 0 and 1 clearly satisfies the
properties of a pure poset. [

Note that any Coxeter group partially ordered by Bruhat order is a connected
zircon. In fact, any Coxeter group W is ranked by the function length and, for
all w € W, any right or left descent of w gives a special matching of w.
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Let us plung into the study of the local structure of zircons.
Proposition 7.1.5 Any interval of length 2 of a zircon Z is a square.

Proof. By contradiction, let z € Z be an element of smallest rank such that
it is the top of an interval [z, z] which is not a square. Let M be a special
matching of z.

Case i) [z,2] = {z,y,2}

Necessarily, M (z) <z otherwise M would restrict to [z, z] by Lemma 4.2.1, and
this is not possible because |[z,z]| = 3 is odd. By our induction hypothesis,
[M(z),y] = {M(x),z,a,y} is a square. By the definition of special matching,
a > M(x) implies M(a) > 2. Then M(a) € [z,z] and necessarily M (a) = y.
Hence M(z) # y and, by the Lifting Lemma (Lemma0.3.4) and by induction
hypothesis, [M(x), M(z)] = {M(z),a,b, M (2)} is a square. M (z) < b implies
x < M(b), hence M (b) € [x.2], M (b) # y, which is a contradiction.

Case ii) |[z,2]| > 4

Suppose that a,b,c € [z, 2]\ {z, 2}, all distinct. If M(z) € [z, 2], say M(z) =
a, then M(b),M(c) ¢ [z,z], otherwise by Lemma 4.2.1 M would restrict to
[z,z]. Hence by the definition of special matching, a > M (b), M(c),z and
M (z)<aM (b), M(c),z. So [M(z),a] is not a square and this is a contradiction by
the minimality of z. If M (z) ¢ [z, 2], then by the definition of special matching
M(z) > M(a), M(b), M(c) and M(z) < M(a), M(b), M(c). So [M(z), M(z)] is

not a square and this is again a contradiction. O

Proposition 7.1.6 Let Z be a connected zircon with rank function p and let
z € Z. Then

1. if p(z) = 3, the poset [0, 2] is a 2 or 3-krown;
2. if p(z) = 4, the poset [0, 2] is isomorphic to one of the following posets in
S(5):
(a) [e,s1528384],
(b) [e, s2815382],
(c) [e, s1825183],

or it is isomorphic to one of the two posets in Figure 7.2, or it is a dihedral

interval of length 4.
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Figure 7.2: zircons of length 4

Proof. Let us prove the first statement. Let M € S.. Propositions 7.1.2
and 7.1.5 give bounds for the cardinality of {z € Z : z < 2z}, namely:

2<|{zx€eZ:zaz2} <3.

Case [{zreZ:z<z2} =3.

Let {z € Z : z <2z} = {a1,a2,a3}, and M(z) = a;. By the definition
of special matchings, M (as) <1 a1,a2, M(az) <1 a1,a3. By Proposition 7.1.5,
[0, as] is a square, and necessarily [0,as] = {0, M(0), M (az),as}. By the def-
inition of special matching, M(0) < az. Clearly {z € [0,2] : p(z) = 1} =
{M(0), M (as), M(as)} because other elements would not be matchable. So
[0, 2] is a 3-krown.

Case |[{z € Z:x<z}=2. Let {zr € Z : 2 <z} = {a1,a:2}, and M(z) = a;. By
the definition of special matchings, M (as) < a1, as. By Proposition 7.1.5, [0, as]
is a square, and necessarily [0, as] = {0, M(0), M (as),as}. Clearly {z € [0, 2] :
p(z) = 1} = {M(0), M (as)} because other elements would not be matchable.
It remains to prove that M(0) <l a; and this follows from the fact that [0, a,] is
a square.

Note that [0, z] is a 2-krown if M (0) < M(z); it is a 3-krown otherwise.

The proof of the second statement is similar to that of the first one. Let
M € S.. Again Propositions 7.1.2 and 7.1.5 give bounds for the cardinality of
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{r € Z:2 <z}. Now we have
2<|{zreZ:zaz} <4

Case [{z € Z:x a2z} =4.

Let {x € Z : z <z} = {a1,a2,a3,a4}, and M(z) = ay. By the definition of
special matchings, a; > M (az), M (a3), M (ay4), so [0,a;] is a 3-krown by the first
statement. Suppose that there is another 3-krown starting from 0, say [0, as].
By the definition of special matchings, we have that [0,a;] N [0,as] is either
[0, M (a3)] or [0, M (as)]U{y}, where p(y) = 1. In the first case, by Lemma 7.1.5,
M(0) £ M(as), M(a4), and so [0,a3] and [0, a4] are also 3-krowns. Hence (a)
holds. Tn the second case, M(0) < M(as), M(a4), and [0,as] and [0, a4] are
2-krowns. Hence (b) holds. Tt remains to prove that is not possible that [0, as],
[0,a3] and [0,a4] are all 2-krowns. This follows by noting that in this case
[0, a2] N[0, az] N[0, as] = {0}, and hence there are no possibilities for M (0).
Case [{zx € Z:x a2z} =3.

Let {x € Z : <z} = {a1,a2,a3}, and M(z) = a;. Using the same technics, one
can see that (c) holds either if [0, M ()] is a 3-krown or if [0, M ()] is a 2-krown
and [0, as] is a 3-krown. Let us analyze the case both [0, M(2)] and [0, ay] are
2-krowns. By the definition of special matchings, M (z) > M (a2), M (a3). Set
y <as, y # M(az). Since [y,z] is a square, y < az. Now {z € [0,2] : p(z) =
2} = {M(a2), M (as),y} because, for another element y', [y, z] would not be a
square. All this leads to the poset to the left in Figure 7.2.

Case [{z€Z :x a2z} =2.

Let {x € Z : x < 2} = {a1,0a2}, and M(2) = a;. By the definition of special
matchings, M (as2) < a1, as. Choose ¢; <1 M(as) such that ¢; < M(eq). It exists
because [O,M(ag)] is a square by Proposition 7.1.5. Also [e1,as] is a square,
and necessarily [e1, a2] = {1, M (c1), M (a2),as}. By the fact that [M(c1), 2] is
a square, we have that M (c;) <a;. Suppose that {M(as), M(c1)} = {z € [0, 2] :
p(z) =2} and set ¢y € {2 €[0,2] : p(x) = 1}. Then M(cy) =0 and {z € [0, 2] :
p(xz) = 1} = {e1, 2} because other elements would not be matchable. Hence
[0,2] is dihedral. On the contrary, if there exists y € {z € [0,2] : p(z) = 2},
y # M(a1), M(cy), we have that y <ay,as because [y, z] is a square. Then [0, as]
is isomorphic to the poset to the right in Figure 7.2 because [0,a;] and [0, as]
must be 3-krowns by the first statement. [
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7.2 Diamonds

In this section we prove the main result of this chapter. We show that the
concept of special matching leads to an entirely poset theoretic definition of
R-polynomials, }Aé—polynomials and Kazhdan-Lusztig polynomials for a certain

class of posets, which we call diamonds.

Definition 7.2.1 We say that a connected zircon D is a diamond if, for all
w € D and for all (M,N) € Sy, x Sy, there exists a sequence (Mg, My, ..., My)

of special matchings in S, such that:
- My=M
- My=N

- foralli=0,1,...)k—1,
(M, M) (@) divides [(M;, Miy1)(w) (7.1)

forallz € D, z < w.
Let us do a few simple considerations on diamonds.

1. A diamond D does not necessarily admit special matchings of all the

poset. Not only, there exist finite diamonds D of odd cardinality, such as

N

2. A diamond does not necessarely avoid K3, as the following.

the following trivial one.
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3. The hipothesis “connected” in Definition 7.2.1 is not essential but clearly

does not affect the problem of defining Kazhdan-Lusztig polynomials.

We now define the }Aé—polynomials of an arbitrary diamond (throught Defini-
tion 7.2.2), and then we prove that they do not depend on the choosen special
matching. Maybe this is not the most elegant way, but it is certainly the easiest,
and mimics what we did for the Coxeter groups.

Definition 7.2.2 For all w € D, choose a special matching of [O,w] and denote
it by Ny. Then, for all u,w € D, we inductively define the E—polynomial ﬁ%w(q)

by the following recursive property:

7 _ ENw(u),Nw(w)(q) + X (Nw (1) > u) qﬁu,Nw(w) (@), ifu<w,
uﬂu(Q) = 0 ifu £ w

The point is to prove that Definition 7.2.2 is well defined, namely that it does
not depend on the family {N,,},ep of special matchings.

Theorem 7.2.3 Let D be a diamond, w € D, and M be a special matching of

w. Then,

Ru,w (l]) = EM(’LL),M(’LU) (q) + X(M(U,) > u) q Ru,M(w) (q)a (72)
for all u < w.

Proof. We proceed by induction on p(w) the statement being trivial if p(w) = 1.
So assume p(w) > 2 and fix u < w. Let {Ny}ywep be as in definition 7.2.2 and,
for brevity, set N := N,,. We may clearly assume that M and N satisfy (7.1).
Denote by w1, us, ..., Uz, the elements of (M, N)(u) indexed so that u; < u;
implies ¢ < j. Let F be the free Z[g]-module generated by u;, i € [2m]. We
define two module endomorphisms A, B : F — F by letting

Alug) == M (u;) + x (M (ui) > ui) qu;

and
B(u;) := N(u;) + x(N(u;) > ui) qug,

for all ¢ € [2m]. We claim that

...ABA =..-BAB. (7.3)
———r N —

m m
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In fact, consider the Coxeter system (G, S), where S = {s,t,r}, m(s,t) = m
and m(s,r) = m(t,r) = 3 (where s := ¢t if m = 1). Let G' be the parabolic
subgroup G' := Gy, H := @, Zlg] v and & : F' — H be the unique module
isomomorphism such that ®(u;) = e, ®(M(u;)) = sP(u;) and ®(N(u;)) =
t®(u;) for all i € [2m]. Denote x; := ®(u;), for all i € [2m]. Then, by our
definitions, the endomorphisms «, 8 : H — H defined by

a(z) ==sz+ x(sz>x)qz

and
B(z) ==tz + x(tz > z)qz,

for all z € G', satisfy o A = ao® and o B = o &. Hence to prove
(7.3) it is enough to show that ...afa = ...Baf. For all ¢ € G and all
——— N———

m m
h =73 iclm) hi(q) #: € H we define h? € Z[q] by

W= Y hi(@)Bag(9).

i€[2m)]

Note that, if sg<1g then h? = (a(h))*? by Corollary 0.5.3, and similarly if tg<1g
then h? = (B(h))%. In particular, if sg <l g and tg <1 g then

...Stsyg ...tstg
W =(-apalh)) * =(..BaB(h) *
k k

for all £ < m. If K = m we deduce that

(...aBa(h))? = (... BaB(h))%, (7.4)
——— ———

for all h € H and all g9 € G such that sgy > go and tgo > go-

Now fix, for the rest of the proof, i € [2m] and let ... aBa(z;) = >, Pj(q)z;
and ... BaB(z;) = 32; Qj(q)z;. If we let S;j(q) := Pj(q) —Q;(q) for all j € [2m],
——

m
(7.3) will be proved if we show that S;(¢) = 0 for all j € [2m]. We prove this
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by induction on j. Equation (7.4), for h = z;, implies that

Sj(a) Ra;00(4) = 0 (7.5)
>

Jj€[2m]

for all gg € G such that sgo > go and tgo > go- If we set go = r in (7.5) we obtain

S1 (q)Re,r (q) =0,

forcing S1(g) = 0. Now let 5 > 1 and suppose that Si(q) = 0 for k < j. If we
set go = rz; (note that s(ra;) > re; and t(re;) > ra; since r does not commute
neither with s nor with ¢) in (7.5) we have that

S] (q)ij,ij (q) = 0:

which implies S;(¢) = 0 and the proof of (7.3) is completed.
For f =3, filg)u; € F and w € W we let f* =3, fz(q)éuw(q) Note

that in this notation (7.2) can be reformulated as

By alternated use of the propety defining N and our induction hypothesis we

have

- NMN(w)

——

u” = (B@)V™) = (ABw)"N) = (-BAB(w)
n
and similarly
-~ M N M (w)

(A)M = (.- ABA(w) - ;
where 2n = |(M, N)(w)|. The thesis follows from (7.3) since m divides n by the
definition of diamonds and :-- MNM(w) = :-- NM N (w). O

S—— S———

n n

After Definition 7.2.2, we can clearly define the R-polynomials and the
Kazhdan-Lusztig polynomials of a diamond by generalizing respectively (5) and
Theorem 0.5.8. Hence, given a diamond D, for all u,v € D we let ﬁuﬂ,(q) be
the unique polynomial satisfying
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The Kazhdan-Lusztig polynomials of a diamond are defined through the follow-

ing theorem-definition.

Theorem 7.2.4 Let D be a diamond. Then there is a unique family of poly-
nomials {P, »(q) }uwep C Z[q] satisfying the following conditions:

1. Puﬂ)(Q) =0ifuLv;
2. Pyu(q) =1;

3. deg(Puw(q)) < 5 (p(v) — plu) = 1), if u <v;

M

4. if u <w, then

1
p(v)—p(u) P, <_> — Ru.(q) P.u(q).
q v\ 3 > Ru:(q) P:u(9)

u<z<v
Proof. Straightforward by the restriction on deg(P, »(¢)). O

The following result proves what one certainly wishes to be true.

Theorem 7.2.5 All Cozxeter groups partially ordered by Bruhat order are dia-

monds.

Proof. Let (W,S) be a Coxeter system and let M and N be two special
matching of an element w € W. Suppose first that [e, w] is not dihedral. If M
and N are both of type A or p, then (M, N) satisfies (7.1). Suppose that M is of
type A, -multiplication for a certain s € S-, N is of type p, and ss283--- s, is a
reduced expression of w. Call p, the special matching given by the multiplication
to the right for s.. Then (M, p,, N) satifies (7.1). If M and N are not both
multiplication matchings, then the assertion follows by Theorem 4.4.7.

Now suppose that [e,w] is a dihedral interval of length n. The set S,, of the
special matchings of w is in bijection with the set of all n-sequences with entries
in {l,r}, ending with . Infact, foralli =1,...,n—1,fix {v € [e,w] : {(v) =i} =
{vi1,vir} and send a special matching M to the sequence (zp—_1,Zn—2,...,Z1,T)
where x; = 1 if M (v;;)>vig, x; = rif M(v;,)>v; . In Figure 7.3, the sequence
associated to the dotted special matching is (I,r,r,1,1,7).

Any two such sequences give rise to a composition of n, just by looking at
the positions where they coincide. For example, the sequences (1,1, r,r,r,l,7,1,7)
and (r,1,1,1,r,1,1,1,7) give rise to the composition (2,3,1,2,1) of 9 since they
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V4

V3,1

V21

e

Figure 7.3: dihedral of length 6

have same entries in positions 2, 5, 6, 8, and clearly 9. Two special matchings
satisfy (7.1) if all the terms in the composition associated to them divide the

first term. Let us show that there exists a chain of sequences such that

- any two consecutively sequences satisfy this property;
- it starts with T = (zy,—1,...,21,7) = (r,7,...,7);

- it ends with ¥ = (yn—1,...,y1,7) = (r,...,r 1,7, ... ), for all possible posi-

tions of the unique [.

Then the assertion will follow by transitivity and by the symmetry of the prob-
lem. If [ = y,_1, then the composition associated is (2,1,...,1) and we can
choose the trivial chain of the two sequences. If | = y; # y,_1, then we can
consider the sequence z = (I, 7,7, ...,r) and hence the chain (7,Z,v), which has

the required properties. [

The new definitions of ﬁ—polinomials, R-polynomials and Kazhdan-Lusztig

polynomials are obviously consistent. In particular, given d in a diamond D,

Ry (@) = ¢"@ (7.6)
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if [ﬁ, d] is a Boolean algebra. Moreover, given u,v in a diamond D, u < v, it is
straightforward by Theorem 7.2.3 that

> _ q, if p(U) - p(u) ]-a
Funld) = { 2, i plo) — plu) =2

We say that a poset is n-gon-avoiding if it does not contain a dihedral
interval of length 5. We say that a poset is lower n-gon-avoiding if it does not

contain a dihedral interval of length ¢ containing a minimal element.

Theorem 7.2.6 Let Z be a connected zircon which is both lower 8-gon-avoiding
and K3 »>-avoiding. Suppose that for all w € Z, p(w) > 2, and for all M € Sy,
there exists a special matching M' € Sy, such that M (w) # M'(w). Then Z is

a diamond.

Proof. Note first that Corollary 4.1.3, Proposition 4.2.3 and then Lemma 4.2.5
hold under these hypotheses.

We have to prove that for all w € Z and for all (M, N) € S,, X Sy, there exists a
sequence of special matchings in S, satisfying the properties of Definition 7.2.1.
We proceed by induction on p := p(w), the result being clear if p = 1.

So, assume p > 2. Firstly, we prove that, if M(w) # N(w), the sequence
(M, N) satisfies (7.1), i.e. [(M, N)(z)| divides [{(M, N)(w)| for all z < w. So set
2n = |(M, N)(w)|, where n > 2. Let v < w and 2m := |(M, N)(u)|. We have
to prove that m divides n so we may assume m > 2. By applying Lemma 4.2.5
to (M, N)(w) and (M, N)(u) we obtain that there exist a lower dihedral interval
containing an orbit of cardinality n and a lower dihedral interval containing an
orbit, of cardinality m. Hence {m,n} C {2, 3} since Z is lower 8-gon-avoiding.
If M (0) # N(0) then, by Lemma 4.2.5, the two dihedral intervals are coincident,
which forces m = n.

If M(0) = N(0) then the two dihedral intervals are not necessarily coincident,
but clearly there remains place only for orbits of cardinality 4. Hence m = n = 2.

Now suppose that M (w) = N(w). By our hypotheses, there exists a special
matching M’ € S, such that M (w) # M'(w). Then by what we have already
proved, (M, M', N) satisfies (7.1). O

Note that not all zircons are diamonds. For example, the two zircons in
Figure 7.2 are not diamonds. Let us consider the poset on the right, the con-
sideration about the left one being entirely similar.
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Figure 7.4: zircon but not diamond

Let M be the dashed special matching and N be the dotted special matching.
Then the pair (M, N) € S,, xS, does not satisfy the property of Definition 7.2.1.
The reader can easily check this by noting that |S,| = 6, a special matching
F € Sy, being uniquely determinated by F'(a1) and F'(as), with 2-3 possibilities.

Another prove of that can be obtained, for example, by showing that

Rut(ey w(w) (@) + X(M(€) > €) ¢ Re i) (@)
is not equal to

R(ey,n(w) (@) + X(N(€) > €) ¢ Re, n(w) (0)-
Now, Rureym(wy (@) + X(M(¢) > ¢) ¢ Revr(uy(q) = Ry, = ¢° by (7.6) since
[0, a1] is a 3-krown, namely a Boolean algebra of length 3.

On the Contral;}fa by (76)7 éN(c),N(w)(Q) +X(N(C) I>C) q égN(w) (Q) = ébg,m (Q) +
X(N(e) > ) qReai(q) = q+ ¢






Bibliography

[1] H. H. Andersen, The irreducible characters for semi-simple algebraic groups
and for quantum groups, Proceedings of the International Congress of
Mathematicians, Ziirich, 1994, 732-743, Birkhauser, Basel, Switzerland,
1995.

[2] E. Artin, The Gamma function, Holt, Rinehart and Winston, New York,
1964.

[3] S. Billey, V. Lakshmibai, Singular loci of Schubert varieties, Progress in
Math. 182, Birkhduser, Boston, MA, 2000.

[4] S. Billey and G. Warrington, Kazhdan-Lusztig polynomials for 321-hexagon
avoiding permutations, J. Algebraic Combin. 13 (2001), 111-136.

[5] S. Billey and G. Warrington, Mazimal singular loci of Schubert varieties in
SL(n)/B, Trans. Amer. Math. Soc., to appear.

[6] A. Bjorner, Orderings of Coxeter groups, Combinatorics and Algebra, Con-
temporary Math. vol. 34, Amer. Math. Soc. 1984, 175-195.

[7] A.Bjorner, Face numbers of complezes and polytopes, Proceedings of the In-
ternational Congress of Mathematicians, Berkeley, 1986, 1408-1418, Amer-
ican Mathematical Society, Providence, U.S.A., 1987.

[8] B. Boe, Kazhdan-Lusztig polynomials for hermitian spaces, Trans. Amer.
Math. Soc. 309 (1988), 279-294.

[9] N. Bourbaki, Groupes et algébres de Lie, Chap. 4-6 (Hermann, Paris, 1968).

[10] T. Braden and R. MacPherson, From moment graph to intersection coho-
mology, Math. Ann. 321 (2001), 533-551.

167



168

BIBLIOGRAPHY

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

F. Brenti, A combinatorial formula for Kazhdan-Lusztig polynomials, In-
vent. Math. 118 (1994), 371-394.

F. Brenti, Combinatorial properties of the Kazhdan-Lusztig R-polynomials
for S, Adv. Math. 126 (1997), 21-51.

F. Brenti, Combinatorial expansions of Kazhdan-Lusztig polynomials, J.
London Math. Soc., 55 (1997), 448-472.

F. Brenti, Lattice paths and Kazhdan-Lusztig polynomials, J. Amer. Math.
Soc. 11 (1998), 229-259.

F. Brenti, Kazhdan-Lusztig and R-polynomials from a combinatorial point
of view, Discrete Math. 193 (1998), 93-116.

F. Brenti, Kazhdan-Lusztig and R-polynomials, Young’s lattice, and Dyck
partitions, Pacific J. Math. 207 (2002), 257-286.

F. Brenti, The intersection cohomology of Schubert varieties is a combina-

torial invariant, preprint, available at www.mat.uniroma2.it/ brenti.
F. Brenti, private communication, June 2003.

F. Brenti and R. Simion, Explicit formulae for some Kazhdan-Lusztig poly-
nomials, J. Algebraic Combin. 11 (2000), 187-196.

F. Brenti, F. Caselli, M. Marietti, Special matchings and Kazhdan-Lusztig

polynomials, preprint.

F. Brenti, F. Caselli, M. Marietti, On the group generated by the special

matchings of a permutation, preprint.

F. Brenti, F. Caselli, M. Marietti, Kazhdan-Lusztig polynomials for arbi-

trary posets, preprint.

F. Caselli, Proof of two conjectures of Brenti and Simion on Kazhdan-

Lusztig polynomials, J. Algebraic Combin., to appear.

F. Caselli and M. Marietti, Combinatorial interpretations of certain classes

of Kazhdan-Lusztig polynomials, preprint.

V. Danilov, The geometry of toric varieties, Russian Math. Surveys 33
(1978), 97-154.



BIBLIOGRAPHY 169

[26] V. Deodhar, On some geometric aspects of Bruhat orderings. I. A finer
decomposition of Bruhat cells, Invent. Math., 79 (1985), 499-511.

[27] V. Deodhar, On some geometric aspects of Bruhat orderings. II. The
parabolic analogue of Kazhdan-Lusztig polynomials, J. Algebra, 111 (1987),
483-506.

[28] V. Deodhar, A combinatorial setting for questions in Kazhdan-Lusztig the-
ory, Geometriae Dedicata, 36 (1990), 95-119.

[29] V. Deodhar, A brief survey of Kazhdan-Lusztig theory and related topics,
Proc. Sympos. Pure Math., 56 (1994), 105-124.

[30] F. du Cloux, An abstract model for Bruhat intervals, Europ. J. Combin.,
21 (2000), 197-222.

[31] M. Dyer, Reflection subgroups of Cozeter systems, J. Algebra, 135 (1990),
57-63.

[32] M. Dyer, On the Bruhat graph of a Cozeter system, Compositio Math., 78
(1991), 185-191.

[33] M. Dyer, Hecke algebras and shellings of Bruhat intervals, Comp. Math.
89 (1993), 91-115.

[34] C. Ehresmann, Sur la topologie de certains espaces homogénes, Ann. Math.
35 (1934), 396-443.

[35] W. Fulton, Young tableauz. With applications to representation theory and
geometry. London Mathematical Society Student Texts 35, Cambridge Uni-
versity Press, Cambridge, 1997.

[36] A. Garsia and T. McLarnan, Relations between Young’s natural and
Kazhdan-Lusztig representations of Sy, Adv. Math. 69 (1988), 32-92.

[37] G. Gasper and M. Rahman, Basic hypergeometric series, Cambridge Univ.
Press, Cambridge, 1990.

[38] M. Goresky, R. MacPherson, Intersection homology theory, Topology 19
(1983), 135-162.

[39] J. E. Humphreys, Reflection Groups and Coxeter Groups, Cambridge Stud-
ies in Advanced Mathematics, no.29, Cambridge Univ. Press, Cambridge,
1990.



170 BIBLIOGRAPHY

[40] D. Kazhdan and G. Lusztig, Representations of Cozeter groups and Hecke
algebras, Invent. Math. 53 (1979), 165-184.

[41] D. Kazhdan and G. Lusztig, Schubert varieties and Poincaré duality, Proc.
Sympos. Pure Math. 36 (1980), 185-203.

[42] F. Kirwan, An introduction to intersection homology theory, Research Notes
in Math. 187, Pitman, 1988.

[43] V. Lakshmibai and B. Sandhya, Criterion for smoothness of Schubert va-
rieties in Sl(n)/B, Proc. Indian Acad. Sci. Math. Sci. 100 (1990), 45-52.

[44] A. Lascoux, Polyndémes de Kazhdan et Lusztig pour les variétés de Schubert
vezillaires, C. R. Acad. Sci. Paris Sér. I Math. 321 (1995), 667-670.

[45] A. Lascoux and M. Schiitzenberger, Polyndmes de Kazhdan et Lusztig pour
les grassmanniennes, Astérisque 87-88 (1981), 249-266.

[46] B. Leclerc, J.-Y. Thibon, Littlewood-Richardson coefficients and Kazhdan-
Lusztig polynomials, Adv. Stud. Pure Math., 28 (2000), 155-220.

[47] 1. G. Macdonald, Notes on Schubert Polynomials, Publ. du LACIM 6, Univ.
du Québec, Montréal, 1991.

[48] M. Marietti, Closed product formulas for certain R-polynomials, European
J. Combin. 23 (2002), 57-62.

[49] M. Marietti, Kazhdan-Lusztig polynomials for Boolean elements in linear

Coxeter systems, preprint.

[50] M. Marietti, Parabolic Kazhdan-Lusztig and R-polynomials for Boolean el-

ements in the symmetric group, preprint.

[51] T. Oda, Convex Bodies and Algebraic Geometry. An Introduction to the
Theory of Toric Varieties, Ergebnisse der Mathematik und ihrer Grenzge-
biete 15, Springer-Verlag, Berlin, 1988.

[52] P. Polo, Construction of arbitrary Kazhdan-Lusztig polynomials in symmet-
ric groups, Representation Theory 3 (1999), 90-104.

[53] B. Shapiro, M. Shapiro and A. Vainshtein, Kazhdan-Lusztig polynomials for
certain varieties of incomplete flags, Discrete Math. 180 (1998), 345-355.



BIBLIOGRAPHY 171

[54] W. Soergel, Kazhdan-Lusztig polynomials and a combinatoric for tilting
modules, Represent. Theory 1 (1997), 83-114.

[55] R. P. Stanley, Enumerative Combinatorics , vol. 1, Wadsworth and
Brooks/Cole, Monterey, CA, 1986.

[56] R. P. Stanley, Generalized h-vectors, intersection cohomology of toric vari-
eties, and related results, Adv. Studies Pure Math. 11 (1987), 187-213.

[57] R. P. Stanley, Subdivisions and local h-vectors, J. Amer. Math. Soc. 5
(1992), 805-851.

[58] R. P. Stanley, Enumerative combinatorics, vol. 2, Cambridge Univ. Press,
Cambridge, 1999.

[59] H. Tagawa, On the non-negativity of the first coefficient of Kazhdan-Lusztig
polynomials, J. Algebra 177 (1995), 107-108

[60] J. Tits, Le probléeme des mots dans les groupes de Coxeter, Symposia Math-
ematica, vol 1, INDAM, Roma, 1969, 175-185.

[61] M. Varagnolo, E. Vasserot, On the decomposition matrices of the quantized
Schur algebra, Duke Math. J. 100 (1999), 267-297.



