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Introdu
tionKazhdan-Lusztig theory lies in the interse
tion of di�erent resear
h areas ofmodern mathemati
s su
h as representation theory, algebrai
 geometry, Vermamodule theory, and 
ombinatori
s. In this thesis we ta
kle the subje
t from a
ombinatorial point of view, stressing its links with the 
ombinatori
s of words,the theory of posets, and the theory of mat
hings of posets.Kazhdan-Lusztig theory originated in the paper [40℄ by D. Kazhdan and G.Lusztig of 1979. In this seminal paper, the authors introdu
ed a new family ofrepresentations of the He
ke algebra, whi
h is a sort of deformation of the groupalgebra of the Coxeter group. The He
ke algebra and its representations relate totwo families of polynomials with integer 
oe�
ients, indexed by pairs of elementsin the Coxeter group, now 
ommonly referred to as the family fRu;v(q)gu;v2W ofR-polynomials and the family fPu;v(q)gu;v2W of Kazhdan-Lusztig polynomials.These two families are stri
tly 
onne
ted together (and are a
tually in somesense equivalent), and are related to the Bruhat order of the underlying Coxetergroup.After [40℄, whi
h has be
ome a turning point in Coxeter group theory, alarge number of mathemati
ians started studying these subje
ts and their re-lated topi
s. Kazhdan-Lusztig polynomials have been proven to have severalappli
ations in di�erent 
ontexts. We do not want here to make a list of theseappli
ations and we refer the interested reader to [3℄, [29℄, [36℄, [40℄, [41℄. Wejust want to brie�y re
all the two following 
onne
tions with He
ke algebrasand S
hubert varieties, whi
h are of 
on
ern to us. The Kazhdan-Lusztig rep-resentations of the He
ke algebra introdu
ed in [40℄ are based on 
ertain graphs(
alled W -graphs in [40℄). The main ingredients for the 
onstru
tion of 
ertainW -graphs are the top 
oe�
ients of the Kazhdan-Lusztig polynomials of thegroup. This is the main reason why the fun
tion � is important. As to therole of Kazhdan-Lusztig polynomials in the geometry of S
hubert varieties, it is5



6 Introdu
tionknown that, for Weyl and a�ne Weyl groups, their 
oe�
ients are a measure ofthe singularities of the 
orresponding S
hubert varieties. They a
tually 
ountthe dimensions of the lo
al interse
tion homology spa
es of these varieties at apoint lying in a given S
hubert 
ell.On
e these appli
ations of Kazhdan-Lusztig polynomials had been found,there followed the problem of 
omputing them. The main tools are fairly 
om-pli
ated re
ursive formulae already appearing in [40℄. In the past twenty years,many mathemati
ians have tried to dedu
e non re
ursive 
losed formulae, atleast for small 
lasses of elements in parti
ular Coxeter groups (mainly in thesymmetri
 group). For expli
it des
riptions of some families of Kazhdan-Lusztigpolynomials we refer to the works of Billey and Warrington [4℄, Brenti andSimion [19℄, Boe [8℄, Las
oux and S
h�utzenberger [45℄, Shapiro, Shapiro andVainshtein [53℄.The re
urren
e satis�ed by the Kazhdan-Lusztig polynomial Pu;v(q) dependson the des
ents of u and v, on the Kazhdan-Lusztig polynomials Px;y(q) for allx; y in the interval [u; v℄, and on [u; v℄ as a partially order set under the Bruhatorder. One of the most famous 
onje
tures of Kazhdan-Lusztig theory is dueto Lusztig and states that the Kazhdan-Lusztig polynomial Pu;v(q) a
tuallydepends only on the isomorphism type of the interval [u; v℄ as a poset. As
ustomary, we refer to this 
onje
ture as the 
onje
ture of the 
ombinatorialinvarian
e of Kazhdan-Lusztig polynomials. In a very re
ent paper [17℄, Brentihas proved the 
ombinatorial invarian
e of Kazhdan-Lusztig polynomials in the
ase of the symmetri
 group S(n) for lower Bruhat intervals. More pre
isely, hehas proved that the Kazhdan-Lusztig polynomial indexed by the permutationsu and v a
tually depends only on the isomorphism type of the interval [e; v℄,where e is the identity element of S(n).This thesis 
ontains most of the results I have obtained in Kazhdan-Lusztigtheory under the a

urate and always en
ouraging dire
tion of Prof. F. Brenti.It is divided into two distin
t parts.The �rst part, 
omprising Chapters 1-3, is the result of the work I have doneafter having proved a 
onje
tures by Brenti regarding 
ertain expli
it formulaefor R-polynomials of the symmetri
 group. I realized that this proof works ina more general setting and the Boolean elements naturally 
ame out (for thede�nition, see Se
tion 1.1). Hen
e I tried to develop the theory for this 
lassof elements with parti
ular regard to expli
it 
losed formulae. In parti
ular,



7here I 
ompute the R-polynomials of any Coxeter group, the Kazhdan-Lusztigpolynomials of a linear Coxeter group (see Se
tion 0.4 for the de�nition), andthe paraboli
 Kazhdan-Lusztig and R-polynomials of the symmetri
 group. Allthis formulae are easily stated in terms of 
ertain tableaux asso
iated to pairsof Boolean elements.These formulae, moreover, turn out to have several 
onsequen
es. They allow usto expli
itly list all the pairs (u; v) of Boolean elements with �(u; v) 6= 0, to 
om-pute and fa
torize the Kazhdan-Lusztig elements indexed by Boolean elements,to 
ompute and fa
torize the interse
tion homology Poin
aré polynomials in-dexed by Boolean elements, to prove Lusztig's 
onje
ture of the 
ombinatorialinvarian
e for Boolean elements. In all these results, (W;S) 
an be any linearCoxeter system ex
ept in the last one, where (W;S) is supposed to be stri
tlylinear.The se
ond part, 
omprising Chapters 5-7, is the result of a pleasant andfruitful 
ollaboration with Fran
es
o Brenti and Fabrizio Caselli, whi
h is stillongoing. This 
ooperation started while trying to give a solution to Lusztig's
onje
ture on the 
ombinatorial invarian
e of Kazhdan-Lusztig polynomials.The main result of Part II is 
ertainly the following, whi
h prove Lusztig's
onje
ture for lower Bruhat intervals in any Coxeter system.Theorem. Let (W;S) and (W 0; S0) be two Coxeter systems, w 2 W , w0 2 W 0,and let e and e0 be the identities of W and W 0, respe
tively. Suppose that�: [e; w℄! [e0; w0℄ is an isomorphism of partially ordered sets (under the Bruhatorder). Then, for all u; v 2 W , u; v � w, the Kazhdan-Lusztig polynomial Pu;vis equal to the Kazhdan-Lusztig polynomial P�(u);�(v).The proof of this theorem uses the fundamental 
on
ept of spe
ial mat
hings ofa partially ordered set, whi
h are, by de�nition, 
ombinatorial invariant. The
ru
ial point is to prove that any spe
ial mat
hing of [e; v℄ leads to a poset theo-reti
al way for 
omputing the Kazhdan-Lusztig polynomials Pu;v for all elementsu � v. This result has many 
onsequen
es. In parti
ular we show several 
om-binatorial formulae for both R-polynomials and Kazhdan-Lusztig polynomialswhi
h depend on 
lassi
al 
ombinatorial obje
ts su
h as sub-sequen
es, pathsin a label graph, 
ompositions and latti
e paths. This is done by introdu
ingthree families of sequen
es of spe
ial mat
hings whi
h are all new 
ombinatorialanalogues of the 
on
ept of redu
ed expression.



8 Introdu
tionThe following is the plan of this thesis.Part I is organized around the 
lass of Boolean elements.In Chapter 1 we introdu
e the Boolean elements and we give the preliminarylemmas that make the 
ombinatori
s of these elements easier.In Chapter 2, we study the Kazhdan-Lusztig and R-polynomials indexed byBoolean elements. In parti
ular, in Se
tion 1 and in Se
tion 2, we give 
losedprodu
t formulae for the R-polynomials of any Coxeter group and for theKazhdan-Lusztig polynomials of any linear Coxeter group. As a 
onsequen
e ofthese formulae, in Se
tion 3 we prove Lusztig's 
onje
ture of the 
ombinatorialinvarian
e for Boolean elements in stri
tly linear Coxeter systems. In Se
tion 4,we expli
itly list all the pairs (u; v) of Boolean elements with �(u; v) 6= 0. Thisresult 
an be useful also for the 
omputation of other 
lasses of Kazhdan-Lusztigpolynomials sin
e the fun
tion � is often the main obsta
le in their re
ursive
omputation (see, for example, [23, 24℄). In Se
tion 5 and in Se
tion 6 we
ompute and fa
torize respe
tively the Kazhdan-Lusztig elements and the in-terse
tion homology Poin
aré polynomials indexed by Boolean elements.In Chapter 3, we 
ompute the paraboli
 analogues of the Kazhdan-Lusztig andR-polynomials for the symmetri
 group in the 
ase when the indexing permuta-tions are Boolean. These formulae are valid with no restri
tions on the paraboli
subgroupWJ and depend on the number of o

urren
es of 
ertain sub-tableauxin a �xed tableau asso
iated to the indexing permutations.Part II is organized around the appli
ations of the 
on
ept of spe
ial mat
h-ing in Kazhdan-Lusztig theory.Chapter 4 is devoted to the proof of Lusztig's 
onje
ture on the 
ombinatorialinvarian
e of Kazhdan-Lusztig polynomials for lower intervals, that is for in-tervals of the form [e; v℄ for any element v in any Coxeter group. We start bygiving some 
ombinatorial properties of Bruhat order in Se
tion 1 and by ex-amining the 
ombinatori
s of pairs of spe
ial mat
hings in Se
tion 2. After this,we ta
kle the problem of the 
ombinatorial invarian
e. First, in Se
tion 3, weprove the 
onje
ture for lower Bruhat intervals in Coxeter groups of rank 3 andthen from this, in Se
tion 4, we dedu
e the result for all Coxeter groups. Thisfollows by proving that spe
ial mat
hings lead to a poset theoreti
 re
ursionfor 
omputing R-polynomials (Corollary 4.4.8). Finally, in Se
tion 5, for ea
hv 2 W , we introdu
e and study a 
ombinatorial version of the He
ke algebranaturally asso
iated to the spe
ial mat
hings of [e; v℄ and an a
tion of it on thesubmodule of the 
lassi
al He
ke algebra of W spanned by fTu : u � vg. This



9a
tion enables us to reformulate Corollary 4.4.8 in a very 
ompa
t way by sayingthat this a
tion �respe
ts� the 
anoni
al involutions � of these He
ke algebras.This, in turn, implies that the usual re
ursion for Kazhdan-Lusztig polynomialsholds also when des
ents are repla
ed by spe
ial mat
hings thus giving a posettheoreti
 re
ursion for the Kazhdan-Lusztig polynomials whi
h does not involvethe R-polynomials.In Chapter 5, we introdu
e three families of sequen
es of spe
ial mat
hings: theregular sequen
es, the B-regular sequen
es, and the R-regular sequen
es. Allof them are new 
ombinatorial analogues of the 
on
ept of redu
ed expression.Using these sequen
es, we generalize some formulae valid for Kazhdan-Lusztigand R-polynomials of any Coxeter system. In parti
ular, in Se
tion 1 we gen-eralize an algorithm and a 
losed formula of Deodhar ([28, Algorithm 4.11℄ and[26, Theorem 1.3℄) for Kazhdan-Lusztig and R-polynomials, respe
tively. InSe
tion 2 we obtain a bije
tion between subsequen
es of B-regular sequen
esand 
ertain paths in an appropriate dire
ted graph. This bije
tion has severalni
e properties, and transforms the 
on
epts and statisti
s used in the previousse
tion into familiar ones on paths. In Se
tion 3 we generalize to a 
ombinato-rially invariant setting what is probably the most expli
it non-re
ursive formulaknown for Kazhdan-Lusztig polynomials whi
h holds in 
omplete generality,namely Theorem 7.3 of [14℄.In Chapter 6, we study the set of all spe
ial mat
hings Sv of a permutation v.We show that the group 
Wv generated by the spe
ial mat
hings of Sv, whi
hare involutions, is a
tually a Coxeter group, with Sv as set of Coxeter genera-tors. The Coxeter system (
Wv ; Sv) is always isomorphi
 to a dire
t produ
t ofsymmetri
 groups.Finally, Chapter 7 deals with the problem of generalizing the de�nition ofKazhdan-Lusztig and R-polynomials to arbitrary posets. We prove that, ina 
ertain 
lass of posets, the 
on
ept of spe
ial mat
hing leads to an entirelyposet theoreti
 de�nition of Kazhdan-Lusztig and R-polynomials. This 
lass ofposets, whi
h we 
all diamonds, in
ludes the lower Bruhat intervals and the newde�nitions are obviously 
onsistent with the 
lassi
al de�nitions.Chapter 0 is not meant to be an introdu
tion either to Coxeter group theoryor to Kazhdan-Lusztig theory. It just reviews the ba
kground material that isbeing used in both Part I and Part II, and 
olle
ts some already known resultsfor later referen
e. Rarely, some external referen
es were ne
essary in Part II,but we have tried to minimize relian
e on other sour
es. We refer to [39℄ and [9℄for a detailed treatment of the subje
t.
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Chapter 0
Notation and Ba
kgroundThis 
hapter reviews the ba
kground material on posets, Coxeter systems andKazhdan-Lusztig theory that is needed in the rest of this work.0.1 NotationWe 
olle
t here some notation that will be adhered to in the sequel.Z = ring of integer;P = set of positive integer;N = set of non-negative integer;Q = �eld of rational numbers;C = �eld of 
omplex numbers;jSj = 
ardinality of S, for any set S;[a; b℄ = fn 2 P : a � n � bg; for a; b 2 N;[n℄ = [1; n℄; for n 2 N ;R[q℄ = ring of polynomials with 
oe�
ients in R for R = N; Z; Q; C ;[qi℄P = the 
oe�
ient of qi in P for i 2 N, P 2 R[q℄;We write � :=� if we are de�ning the left hand side by the right hand side.11



12 Chapter 0. Notation and Ba
kgroundFor a proposition P we let�(P ) := ( 1; if P is true;0; otherwise:If a1; : : : ; ak 2 Z, we write S = fa1; : : : ; akg< to mean that S = fa1; : : : ; akgand a1 < � � � < ak.For n 2 P, we denote by S(n) the group of all bije
tions � : [n℄ ! [n℄(the symmetri
 group). If � 2 S(n) then we write � = �1 : : : �n to meanthat �(i) = �i, for i = 1; : : : ; n. We will also write � in disjoint 
y
le form(see, e.g., [55℄, p.17) and we will usually omit writing the 1-
y
les of �. Forexample, if � = 365492187 then we also write � = (9; 7; 1; 3; 5)(2; 6). Given�; � 2 S(n) we let �� = � Æ � (
omposition of fun
tions) so that, for example,(1; 2)(2; 3) = (1; 2; 3).0.2 PosetsA partially ordered set (P;�), or poset for short, 
onsists of a set P togetherwith a partial order relation ���. The relation is suppressed from the notationwhen it is 
lear from 
ontext. A subset R of P has a stru
ture of a poset withthe order relation indu
ed by P . An element x 2 P is maximal (respe
tivelyminimal) if there is no element y 2 P nfxg su
h that x � y (respe
tively y � x) .We say that P has a bottom element b0 if there exists an element b0 2 P satisfyingb0 � x for all x 2 P . Similarly, P has a top element b1 if there exists an elementb1 2 P satisfying x � b1 for all x 2 P . If both b0 and b1 exist, then P is bounded.Two elements x; y 2 P are said to be 
omparable if either x � y or y � x,and in
omparable otherwise. We say that P is 
onne
ted if there do not existtwo non-void subsets of P su
h that any element of the �rst is in
omparablewith any element of the se
ond. We also write y � x to mean x � y, x < yto mean x � y and x 6= y, and y > x to mean x < y. If x � y we de�nethe (
losed) interval [x; y℄ = fz 2 P : x � z � yg and the open interval(x; y) = fz 2 P : x < z < yg. If every interval of P is �nite, then P is 
alled alo
ally �nite poset. We say that y 
overs x, or x is 
overed by y, if x < y and[x; y℄ = fx; yg, and we write xC y as well as yBx. If P has a 0̂ then an elementx 2 P is an atom of P if 0̂C x. Similarly, if P has a 1̂ then an element x 2 P isa 
oatom of P if xC 1̂.



0.2 Posets 13The standard way of depi
ting a �nite poset P is to draw its Hasse diagram.This is the graph with P as node set and having an upward-dire
ted edge fromx to y if and only if xCy (so y is drawn �above� x). The Hasse diagram gives allthe order relations by transitivity and it is 
learly minimal with this property.A sequen
e C = (x0; x1; : : : ; xh) of elements in P is 
alled a 
hain (respe
-tively multi
hain) if x0 < x1 < : : : < xh (respe
tively, x0 � x1 � : : : � xh).We then also say that C starts with x0 and ends with xh. The integer h isthe length of C and it is denoted by l(C). The length of a �nite poset P isl(P ) := maxfl(C) : C is a 
hain of Pg. A 
hain is maximal if its elements arenot a proper subset of those of any other 
hain. A 
hain is saturated if allsu

essive relations are 
overings: in this 
ase we write x0 C x1 C � � �C xh.A morphism of posets is a map � : P ! Q from the poset P to the posetQ whi
h is order-preserving , namely su
h that x � y in P implies �(x) � �(y)in Q, for all x; y 2 P . If instead x � y implies �(x) � �(y), the map is order-reversing. Two posets P and Q are isomorphi
 if there exists an order-preservingbije
tion � : P ! Q whose inverse is also order-preserving. In this 
ase � is anisomorphism of posets. An isomorphism of posets � : P ! P is also 
alled anautomorphism. If, instead, � : P ! P is a bije
tion su
h that � and ��1 areorder-reversing, then � is 
alled an anti-automorphism. A poset P is a Booleanalgebra if there is a set S su
h that P is isomorphi
 to the set of all subsets ofS, partially ordered by in
lusion.A poset P is ranked if there exists a (rank) fun
tion � : P ! N su
h that�(y) = �(x) + 1 whenever x C y. A poset P is pure of length n if all maximal
hains are of the same length n. A poset P with bottom element b0 is graded ifevery interval [b0; x℄, x 2 P , is pure. Suppose that P is either pure or graded.De�ne the rank �(x) of x 2 P to be the length of the subposet fy 2 P : y � xg.This gives P a stru
ture of ranked poset.The Möbius fun
tion of P assigns to ea
h ordered pair x � y an integer�(x; y) a

ording to the following re
ursion:�(x; y) = ( 1; if x = y,�Px�z<y �(x; z); if x < y. (1)We say that a �nite graded bounded poset P , with rank fun
tion �, is Eulerianif �(u; v) = (�1)�(v)��(u) for all u; v 2 P , u � v. Equivalently, P is Eulerian if



14 Chapter 0. Notation and Ba
kgroundand only if jfp 2 [u; v℄ : �(p) is evengj = jfp 2 [u; v℄ : �(p) is oddgjfor all u; v 2 P , u � v.Let Int(P ) := f(x; y) 2 P 2 : x � yg. Given a 
ommutative ring R, thein
iden
e algebra I(P ;R) of P with 
oe�
ients in R is the set of all fun
tionsf : Int(P )! R with sum and produ
t de�ned by(f + g)(x; y) := f(x; y) + g(x; y)and (fg)(x; y) := Xx�z�y f(x; z) g(z; y); (2)for all f; g 2 I(P ;R) and (x; y) 2 Int(P ). The in
ident algebra I(P ;R) is anasso
iative algebra having, as identity, the fun
tion Æ de�ned byÆ(x; y) := ( 1 if x = y,0 otherwise.An element f 2 I(P ;R) is invertible if and only if f(x; x) is invertible for allx 2 P . If f is invertible then we denote by f�1 its (two-sided) inverse.0.3 Coxeter systemsLet S = fs1; : : : ; srg be a �nite set of 
ardinality r. A Coxeter matrix is amatrix m : S � S ! f1; 2; : : : ;1g su
h that1. m(si; sj) = m(sj ; si);2. m(si; sj) = 1 () i = j.for all i; j 2 [r℄.Any Coxeter matrix uniquely determines a group W given by the presentation:- generators: S;- relations: (sisj)m(si;sj) for all i; j 2 [r℄ with m(si; sj) 6=1.If a group W has su
h a presentation, then W is a Coxeter group, the pair(W;S) is a Coxeter system, and S is a set of Coxeter generators. The 
ardinality



0.3 Coxeter systems 15jSj = r of S is usually 
alled the rank of W . Given two Coxeter systems (W;S)and (W 0; S0), a map � :W ! W 0 is an isomorphism of Coxeter systems if it isan isomorphism of groups and �(S) = S0. The isomorphism type of a Coxetersystem (W;S) is not determined by the isomorphism type of the groupW alone.Nevertheless, it is very 
ommon to talk about Coxeter groups while having inmind Coxeter systems.The Coxeter matrix m of a Coxeter system (W;S) is en
oded in its Coxetergraph. This is the labeled graph obtained in the following way: take S =fs1; : : : ; srg as the set of verti
es, then join a pair of verti
es fsi; sjg by an edgeif and only if m(si; sj) � 3 and label su
h an edge by m(si; sj) (labels equal to3 are usually omitted).By property 2 of the de�nition of Coxeter matrix, all generators are involutions.Hen
e any element w 2 W 
an be written as a produ
t of generators (withoutusing inverses) w = si1 � � � sit ; sij 2 S:If t is minimal among all su
h expression of w, then t is the length of w and itis denoted by l(w). Any expression of w whi
h is a produ
t of l(w) elements ofS is 
alled a redu
ed expression of w. There is only one element of length zero,the identity, whi
h we denote by e.For all u; v 2W , we letDL(u) := fs 2 S : l(su) < l(u)g;DR(u) := fs 2 S : l(us) < l(u)g;T (W ) := fwsw�1 : s 2 S;w 2Wg; (the set of re�e
tions of W ):The elements of S are also 
alled simple re�e
tions. We write only T instead ofT (W ) when no 
onfusion arises.The proof of the following fundamental result 
an be found in [39℄ �5.8.Theorem 0.3.1 (Ex
hange Property) Let w 2 W , s1; s2; : : : ; sr 2 S, w =s1s2 : : : sr where this expression is redu
ed. Let t 2 T (W ) be su
h that l(wt) <l(w). Then there exists a unique i 2 [r℄ su
h that wt = s1s2 : : : bsi : : : sr (wherebsi means that si has been omitted). In parti
ular, if t 2 S, this i 2 [r℄ is su
hthat si+1si+2 : : : srs is redu
ed while sisi+1 : : : srs is not.



16 Chapter 0. Notation and Ba
kgroundFor the reader's 
onvenien
e, we just re
ord the following easy 
onsequen
e ofthe Ex
hange Property.Proposition 0.3.2 Given a Coxeter system (W;S), let u 2 W . If s 2 DL(u),then there exists a redu
ed expression s1 � � � sr of u su
h that s1 = s. Dually, ifs 2 DR(u), then there exists a redu
ed expression s1 � � � sr of u su
h that sr = s.We will always assume that W is partially ordered by (strong) Bruhat order(denoted by �), that we de�ne through the following Theorem-De�nition. Bya subword of a word s1s2 � � � sn we mean a word of the form si1si2 � � � sir , where1 � i1 < 12 < � � � < ir � n:Theorem 0.3.3 Let u; v 2W . Then the following are equivalent:1. u � v in the Bruhat order;2. there exist t1; : : : ; tr 2 T (W ) su
h that tr : : : t1u = v and l(ti : : : t1u) >l(ti�1 : : : t1u) for i = 1; : : : ; r;3. there exist t1; : : : ; tr 2 T (W ) su
h that ut1 : : : tr = v and l(ut1 : : : ti) >l(ut1 : : : ti�1) for i = 1; : : : ; r;4. for any redu
ed expression of v there exists a redu
ed expression of u whi
his a subword of it;5. for every redu
ed expression of v there exists a redu
ed expression of uwhi
h is a subword of it.The Bruhat order gives W the stru
ture of a graded poset, with length as rankfun
tion. If u � v we let l(u; v) := l(v) � l(u). As for every ranked poset, wewrite uC v if u � v and l(u; v) = 1. Given u; v 2 W we let [u; v℄W := fx 2W :u � x � vg and we write [u; v℄ when no 
onfusion arises. We 
onsider [u; v℄ asa poset with the partial ordering indu
ed by W . It is well known (see, e.g., [6℄,Corollary 1) that intervals of W (and their duals) are Eulerian posets. Hen
e,in parti
ular, if l(u; v) � 2 then all intervals [u; v℄ have 
ardinality equal to 4.The Bruhat graph of W is the following dire
ted graph. Take W as vertexset. For u; v 2 W , put an arrow u! v from u to v if and only if l(u) < l(v) andut = v (equivalently tu = v) for some re�e
tion t. Clearly u < v if and only ifthere exists a 
hain u! u1 ! u2 ! � � � ! uk = v.The following Lemma is usually referred to as the Lifting Lemma (see [39℄,Lemma 7.4 for a proof).



0.3 Coxeter systems 17Lemma 0.3.4 (Lifting Lemma) Let s 2 S and u; v 2W , u � v. Then1. if s 2 DR(v) and s 2 DR(u) then us � vs;2. if s =2 DR(v) and s =2 DR(u) then us � vs;3. if s 2 DR(v) and s =2 DR(u) then us � v and u � vs.We now re
all some results due to J. Tits [60℄. Given s; t 2 S su
h thatm(s; t) <1, let �s;t = stst : : :| {z }m(s;t) , with exa
tly m(s; t) letters.Lemma 0.3.5 Let w 2 W and s; t 2 DL(w). Then there exists a redu
edexpression of w whi
h starts with �s;t, that isv = �s;tv0;with l(v) = m(s; t) + l(v0).Dually, if s; t 2 DR(w), then there exists a redu
ed expression of w whi
h endswith �s;t.Two expressions are said to be linked by a braid move (respe
tively a nil move)if it is possible to obtain the �rst from the se
ond by 
hanging a fa
tor �s;t toa fa
tor �t;s (respe
tively by deleting a fa
tor ss).Theorem 0.3.6 (Tits' Word Theorem) Let u 2W . Then:1. any two redu
ed expressions of u are linked by a �nite sequen
e of braidmoves;2. any expression of u (not ne
essarily redu
ed) is linked to any redu
ed ex-pression of u by a �nite sequen
e of braid and nil moves.Let J � S. The subgroup ofW generated by the set J is 
alled the paraboli
subgroup generated by J , and it is denoted by WJ . The pair (WJ ; J) itself isa Coxeter system with the relations indu
ed by (W;S). We denote by W J theset of minimal length representatives for the right 
osets:W J = fw 2W : DL(w) � S n Jg:



18 Chapter 0. Notation and Ba
kgroundWe have the following de
omposition.Theorem 0.3.7 Multipli
ation gives a bije
tion WJ �W J ! W . That is, forall w 2 W , there exist unique wJ 2 WJ and wJ 2 W J su
h thatw = wJ wJ :Furthermore, these elements satisfyl(w) = l(wJ) + l(wJ ):Note that W ; = W . If WJ is �nite then we denote by wJ0 its longest element.Given u; v 2W J , we let[u; v℄J = fz 2W J : u � z � vg;and 
onsider W J and [u; v℄J as posets with the partial ordering indu
ed by W .We refer the reader to [9℄ or to [39℄ for a more detailed treatment of theargument.0.4 Symmetri
 groups and linear Coxeter groupsThe most important Coxeter group is 
ertainly the symmetri
 group S(n), thatis the group of all permutations of the set [n℄.Consider a set S of 
ardinality n � 1, say S = fs1; s2; : : : ; sn�1g, and 
onsiderthe Coxeter matrix m given by:m(si; sj) = 8><>: 1; if ji� jj = 0,3; if ji� jj = 1,2; if ji� jj > 1,for all i; j 2 [n�1℄. CallW the Coxeter group asso
iated to the Coxeter matrixm. We obtain a group isomorphism from W to S(n) identifying si with thetransposition (i; i+1) for all i 2 [n℄, and extending multipli
atively. This is notthe unique isomorphism and, as usual, we abuse notation by referring to theCoxeter system (W;S) simply by S(n). In the sequel, we write both si and ifor the transposition (i; i+ 1).The Coxeter system (S(n); S) has rank n� 1 and its Coxeter graph is
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s1 s2 sn� � �d d d d dMany of the 
on
epts we have given in general Coxeter group theory 
an bereformulated in a simpler form for the symmetri
 group S(n). In parti
ular,we will need the following useful 
hara
terization of the Bruhat order (see, e.g.,[47℄, Chap.1, for a proof). For � 2 S(n), and i 2 [n℄, we letf�i;1; : : : ; �i;ig< := f�(1); : : : ; �(i)g :Theorem 0.4.1 Let �; � 2 S(n). Then � � � if and only if �i;j � � i;j for all1 � j � i � n� 1.As in [49℄, we 
all an irredu
ible Coxeter system linear if it has Coxetergraph with no bran
h points, that is if it is isomorphi
, for a 
ertain n, to aCoxeter system (W;S = fs1; : : : ; sng) with:( m(si; sj) � 3; if ji� jj = 1;m(si; sj) = 2; if 1 < ji� jj < n� 1:(stri
tly linear if also m(s1; sn) = 2, non-stri
tly otherwise). These are theCoxeter graphs asso
iated respe
tively to a stri
tly and to a non-stri
tly linearCoxeter system: s1 s2 snm1;2 m2;3 mn�1;n� � �d d d d d
s1 s2 sn�1snm1;2 m2;3mn;1 mn�1;n� � �d d d d dd�������� HHHHHHHHwhere there is no restri
tion on the labels mi;j := m(si; sj). This 
lass not onlyin
ludes the symmetri
 groups, but also many of the 
lassi
al Coxeter groups
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kgroundsu
h as those of type B, F , H , ~C , I(m) (whi
h are stri
tly linear) and thoseof type ~A (whi
h are non-stri
tly linear). See [39℄ for a 
omplete des
ription of
lassi
al Coxeter groups.0.5 Kazhdan-Lusztig theoryIn this se
tion we introdu
e the basi
 elements of Kazhdan-Lusztig theory. Allde�nitions and results appearing here are due to Kazhdan and Lusztig and theirproofs 
an be found in [40℄ or [39, Chapter 7℄.Kazhdan-Lusztig polynomials were originally introdu
ed in terms of theHe
ke algebra ([40℄). Let (W;S) be any Coxeter system. The He
ke AlgebraH of W over the ring of Laurent polynomials Z[q 12 ; q� 12 ℄ is the free Z[q 12 ; q� 12 ℄-module H := Mw2W Z[q 12 ; q� 12 ℄Twwith basis fTw : w 2Wg and multipli
ation de�ned by:TsTw := ( Tsw; if s =2 DL(v),(q � 1)Tw + qTsw; if s 2 DL(v), (3)for all w 2W and s 2 S. Every element Tw of the 
anoni
al basis of H is invert-ible; as l(w) in
reases, however, the expression of the inverse gets more and more
ompli
ated and this is the reason why the family fRu;v(q)g of R-polynomialswas de�ned, essentially as its 
oordinates with respe
t to the 
anoni
al basis ofH. More pre
isely, we have the following result.Proposition 0.5.1 There exists a unique family fRu;w(q)gu;w2W � Z[q℄ ofpolynomials satisfying(Tw�1)�1 = (�1)l(w)q�l(w) Xu�w(�1)l(u)Ru;w(q)Tu;for all w 2W .The polynomials Ru;v whi
h have been de�ned by the previous proposition are
alled the R-polynomials of W . It is easy to see that deg(Ru;v) = l(u; v) ifu � v, and that Ru;v(q) = 1 if u = v, for all u; v 2 W . It is 
ustomary to letRu;v(q) := 0 if u 6� v. We then have the following result that follows from (3)and Proposition 0.5.1 (see [39, �7.5℄).



0.5 Kazhdan-Lusztig theory 21Theorem 0.5.2 Let u; v 2W and s 2 DL(v). ThenRu;v(q) = ( Rsu;sv(q); if s 2 DL(u),qRsu;sv(q) + (q � 1)Ru;sv; if s 62 DL(u). (4)Note that the pre
eding theorem 
an be used to indu
tively 
ompute the R-polynomials sin
e l(vs) < l(v). There is also a right version of Theorem 0.5.2.It is sometimes 
onvenient to use a related family of polynomials with non-negative integer 
oe�
ients, 
alled the eR-polynomials. For u; v 2 W we leteRu;v(q) be the unique polynomial su
h thatRu;v(q) = q l(u;v)2 eRu;v(q 12 � q� 12 ): (5)It is not di�
ult to verify that this 
ondition determines a moni
 polynomial~Ru;v(q) 2 N[q℄ of degree l(u; v), satisfying the following re
urren
e relation,whi
h is a 
onsequen
e of Theorem 0.5.2.Corollary 0.5.3 Let u; v 2 W . Then eRu;v(q) = 0 if u � v and eRu;v(q) = 1 ifu = v. If u < v and s 2 DL(v) theneRu;v(q) = eRsu;sv(q) + �(suB u) q eRu;sv(q):Now we introdu
e a fundamental involution on H. De�ne �(q 12 ) = q� 12 and�(Tw) = (Tw�1)�1 and 
ombine these assignments to obtain a ring automor-phism � : H ! H, whi
h is 
learly an involution. Now we look for a spe
ialbasis of H, again indexed by W , 
onsisting of elements �xed by �. One mayeasily 
he
k that the elementsC 0s := q� 12 (Ts + Te)are �xed by �. These are the �rst elements of the basis we are looking for.Theorem 0.5.4 There exists a unique basis C0= fC 0w : w 2 Wg of H su
hthat:1. �(C 0w) = C 0w;2. C 0w = q� l(w)2 Pu�w Pu;w(q)Tu;3. Pu;w 2 Z[q℄ has degree at most 12 (l(u;w)� 1) if u < w, and Pw;w = 1.



22 Chapter 0. Notation and Ba
kgroundThe elements of the basis C0 are 
urrently 
alled Kazhdan-Lusztig elementsand are usually denoted this way following the notation of [40℄, where theywere �rst introdu
ed. The polynomials fPu;v(q)gu;v2W � Z[q℄ (where, for no-tational 
onvenien
e, it is usual to set Pu;v(q) := 0 if u 6� v) are the wellknown Kazhdan-Lusztig polynomials, or P -polynomials. As the 
oe�
ient ofq 12 (l(u;v)�1) in Pu;v(q) plays a very important role, we denote it, as 
ustomary,by �(u; v) and we write u � v if �(u; v) 6= 0.The proof of the existen
e of the Kazhdan-Lusztig elements 
an be obtainedby showing the re
ursive property they satisfy. This re
urren
e leads to thefollowing multipli
ation.Proposition 0.5.5 Let s 2 S. ThenCsCw = ( (q 12 + q� 12 )Cw ; if s 2 DL(w),Csw +Ps2DL(z) �(z; w)Cz ; if s =2 DL(w),for all w 2W .Hen
e, given w 2W , we haveCw = CsCsw � Xz:s2DL(z)�(z; sw)Cz :for all s 2 DL(w).Both R-polynomials (and hen
e eR-polynomials) and Kazhdan-Lusztig poly-nomials 
ould be equivalently introdu
ed in a purely 
ombinatorial way throughthe following results.Theorem 0.5.6 Let (W;S) be a Coxeter system. Then there is a unique familyof polynomials fRu;v(q)gu;v2W � Z[q℄ satisfying the following 
onditions:1. Ru;v(q) = 0 if u 6� v;2. Ru;u(q) = 1;3. if s 2 DL(v) thenRu;v(q) = ( Rsu;sv(q); if s 2 DL(u),qRsu;sv(q) + (q � 1)Ru;sv(q); if s 62 DL(u).



0.5 Kazhdan-Lusztig theory 23Theorem 0.5.7 Let (W;S) be a Coxeter system. Then there is a unique familyof polynomials f eRu;v(q)gu;v2W � Z[q℄ satisfying the following 
onditions:1. eRu;v(q) = 0 if u 6� v;2. eRu;u(q) = 1;3. if s 2 DL(v) theneRu;v(q) = eRsu;sv(q) + �(suB u) q eRu;sv(q):Theorem 0.5.8 Let (W;S) be a Coxeter system. Then there is a unique familyof polynomials fPu;v(q)gu;v2W � Z[q℄ satisfying the following 
onditions:1. Pu;v(q) = 0 if u 6� v;2. Pu;u(q) = 1;3. deg(Pu;v(q)) � 12 (l(u; v)� 1), if u < v;4. if u � v, then ql(u;v) Pu;v �1q� = Xu�z�vRu;z(q)Pz;v(q) :The re
ursive relation for 
omputing the Kazhdan-Lusztig polynomials is givenin the following results.Theorem 0.5.9 Let (W;S) be a Coxeter system, u; v 2 W , u � v, and s 2DL(v). ThenPu;v(q) = q1�
Psu;sv(q) + q
Pu;sv(q)� Xz:s2DL(z) q l(z;v)2 �(z; sv)Pu;z(q);where 
 = �(su < u).Corollary 0.5.10 Let (W;S) be a Coxeter system, u; v 2 W , u < v, and s 2DL(v). Then Pu;v(q) = Psu;v(q).Proposition 0.5.5 and Theorems 0.5.6, 0.5.7, 0.5.9 and 0.5.10 
an also be refor-mulated in right versions.



24 Chapter 0. Notation and Ba
kgroundIn order to �nd a method for the 
omputation of the dimensions of theinterse
tion 
ohomology modules 
orresponding to S
hubert varieties in G=P ,where P is a paraboli
 subgroup of the Ka
-Moody group G, Deodhar ([27℄)de�ned two paraboli
 analogues of Kazhdan-Lusztig and R-polynomials, whi
h
orrespond to the roots of the equation x2 = q + (q � 1)x. These polynomialsare related to their ordinary 
ounterparts in several ways; in parti
ular, theparaboli
 Kazhdan-Lusztig polynomials of type �1 are the ordinary ones in theway of Proposition 0.5.13. But they also have dire
t appli
ation in di�erent
ontext. For example, they have 
onne
tions to the theories of tilting modules([54℄), quantized S
hur algebras ([61℄) and Lie algebras (in [46℄, Le
ler
 and Thi-bon show that the Littlewood-Ri
hardson 
oe�
ients are values at 1 of 
ertainparaboli
 Kazhdan-Lusztig polynomials of type q). Despite this, there are veryfew expli
it formulae for them.We refer to [27, ��2-3℄ for the proofs of the two following result.Theorem 0.5.11 Let (W;S) be a Coxeter system, and J � S. Then, for ea
hx 2 f�1; qg, there is a unique family of polynomials fRJ;xu;v(q)gu;v2WJ � Z[q℄su
h that, for all u; v 2W J :1. RJ;xu;v(q) = 0 if u 6� v;2. RJ;xu;u(q) = 1;3. if u < v and s 2 DR(v), thenRJ;xu;v(q) =8><>: RJ;xus;vs(q); if s 2 DR(u),(q � 1)RJ;xu;vs(q) + qRJ;xus;vs(q); if s =2 DR(u) and us 2W J ,(q � 1� x)RJ;xu;vs(q); if s =2 DR(u) and us =2W J .Theorem 0.5.12 Let (W;S) be a Coxeter system, and J � S. Then, for ea
hx 2 f�1; qg, there is a unique family of polynomials fP J;xu;v (q)gu;v2WJ � Z[q℄,su
h that, for all u; v 2W J :1. P J;xu;v (q) = 0 if u 6� v;2. P J;xu;u (q) = 1;3. deg(P J;xu;v (q)) � 12 (l(u; v)� 1), if u < v;



0.5 Kazhdan-Lusztig theory 254. if u � v, then ql(u;v) P J;xu;v �1q� = Xz2[u;v℄J RJ;xu;z(q)P J;xz;v (q) ;The polynomials RJ;xu;v(q) and P J;xu;v (q) of Theorems 0.5.11 and 0.5.12 are
alled the paraboli
 R-polynomials and paraboli
 Kazhdan-Lusztig polynomialsof W J of type x. By de�nition, R;;�1u;v (q) (= R;;qu;v(q)) and P ;;�1u;v (q) (= P ;;qu;v (q))are the ordinary R-polynomials and Kazhdan-Lusztig polynomials of W .Paraboli
 Kazhdan-Lusztig and R-polynomials are related to their ordi-nary 
ounterparts also in the following way (see [27, Propositions 2.12 andRemark 3.8℄ for a proof).Proposition 0.5.13 Let (W;S) be a Coxeter system, J � S, and u; v 2 W J .Then we have RJ;xu;v(q) = Xw2WJ(�x)l(w)Rwu;v(q);for all x 2 f�1; qg, andP J;qu;v (q) = Xw2WJ(�1)l(w)Pwu;v(q)(in parti
ular, �(u; v) is also the 
oe�
ient of q 12 (l(u;v)�1) in P J;qu;v (q)).Moreover, if WJ is �nite thenP J;�1u;v (q) = PwJ0 u;wJ0 v(q):The Kazhdan-Lusztig polynomials of type q have the following re
ursiveformula (see [27, Proposition 3.10℄), that will be used in the sequel.Theorem 0.5.14 Let (W;S) be a Coxeter system, J � S, and u; v 2 W J ,u � v. Then for ea
h s 2 DR(v) we haveP J;qu;v (q) = ~P � Xw2[u;vs℄J : s2DR(w)�(w; vs)q 12 l(w;v)P J;qu;w(q)where ~P = 8><>: P J;qus;vs(q) + qP J;qu;vs(q); if us < u,qP J;qus;vs(q) + P J;qu;vs(q); if u < us 2W J ,0; if u < us =2W J .



26 Chapter 0. Notation and Ba
kgroundRemark. It is easy to prove by indu
tion on l(v) that if us =2 W J then anyP J;qu;w(q) in the sum of Theorem 0.5.14 is 0, and 
onsequently the paraboli
Kazhdan-Lusztig polynomial P J;qu;v (q) is 0. Re
all that, if u � v, the ordinaryKazhdan-Lusztig polynomial Pu;v(q) is always non-zero.Corollary 0.5.15 Let (W;S) be a Coxeter system, J � S, and u; v 2 W J ,u � v. Then, for ea
h s 2 DR(v), we haveP J;qu;v (q) = P J;qus;v(q):In parti
ular, if s 2 DR(v) nDR(u), then �(u; v) = 0.We refer to [9, 39℄ and [40, 27℄ for more details 
on
erning general Coxetergroup theory, and ordinary and paraboli
 Kazhdan-Lusztig polynomials.0.6 Combinatorial invarian
e 
onje
tureOne of the most famous 
onje
ture in Kazhdan-Lusztig theory is 
ertainlyLusztig's 
onje
ture on the 
ombinatorial invarian
e of Kazhdan-Lusztig poly-nomials. This long standing 
onje
ture states that the Kazhdan-Lusztig poly-nomial Pu;v(q) depends only on the isomorphism type of the interval [u; v℄ as aposet.Conje
ture 0.6.1 (Lusztig) Let (W;S) and (W 0; S0) be two Coxeter systems,u; v 2 W and u0; v0 2 W . Suppose that �: [u; v℄ ! [u0; v0℄ is an isomorphism ofposets (under Bruhat order). ThenPx;y(q) = P�(x);�(y)(q)for all x; y 2 [u; v℄.As a dire
t 
onsequen
e of Theorem 0.5.8 and of (5), Conje
ture 0.6.1 
an bereformulated both in terms of R and eR-polynomials.Corollary 0.6.2 Let (W;S) and (W 0; S) be two Coxeter systems, u; v 2 W andu0; v0 2 W 0, and let � : [u; v℄ �! [u0; v0℄



0.7 Spe
ial mat
hings 27be an isomorphism of posets. Then the following are equivalent:i) Px;y(q) = P�(x);�(y)(q) for all x; y 2 [u; v℄;ii) Rx;y(q) = R�(x);�(y)(q) for all x; y 2 [u; v℄;iii) eRx;y(q) = eR�(x);�(y)(q) for all x; y 2 [u; v℄.For many years there have been very few partial results to support it. This
onje
ture was known to be true for [u; v℄ latti
e (see [11℄) and for [u; v℄ of rank� 4. Pre
isely,eRu;v(q) = 8><>: ql(u;v); if [u; v℄ is a latti
e,q3 + q; if [u; v℄ is a 2-
rown,q4 + B2(u;v)2 q2; if l(u; v) = 4, (6)where B2(u; v) is the number of paths from u to v of length 2 in the Bruhatgraph of W . Re
ently in [17℄ Brenti proved that Conje
ture 0.6.1 is true whenW and W 0 are symmetri
 groups, and u and u0 are the identities of W and W 0(see Corollary 0.7.7).In Se
tion 2.3 we prove that Lusztig's 
onje
ture holds when the Coxetergroups W and W 0 are linear Coxeter groups, and the elements v and v0 areBoolean elements. All Chapter 4 is devoted to what is probably the most generalresult on the 
ombinatorial invarian
e. We prove that Lusztig's 
onje
ture istrue when u and u0 are the identities of W and W 0 with no restri
tions on theCoxeter groups W and W 0. The proof of this result is based on the 
on
ept ofspe
ial mat
hing, to whi
h is devoted the following se
tion.0.7 Spe
ial mat
hingsIn this se
tion we follow [17℄ to de�ne the spe
ial mat
hings of a poset, whi
h arefundamental in Part II. We also 
olle
t the results of [17℄ that will be needed inthe sequel for future referen
es. Spe
ial mat
hings had already been 
onsideredin the literature by du Cloux ([30℄) under the equivalent 
on
ept of 
ompressionlabelings.Remind that a mat
hing of a graph G with vertex set V and edge set E isan involution M : V ! V su
h that fM(v); vg 2 E for all v 2 V . A mat
hingof a graph may be visualized by 
oloring with the same 
olor all edges of theform fM(v); vg.



28 Chapter 0. Notation and Ba
kgroundDe�nition. Let P be a partially ordered set. We say that a mat
hing M ofthe Hasse diagram of P is a spe
ial mat
hing of P ifuC v =)M(u) �M(v);for all u; v 2 P su
h that M(u) 6= v.For example, the dotted mat
hing of the following poset is a spe
ial mat
hing

while the dashed one is not. For 
onvenien
e, in some �gures we do not draw theline of the 
overing relation between v and M(v). Note that a spe
ial mat
hinghas 
ertain rigidity properties. For example, if uCv andM(u)Bu, thenM(v)Bvand M(u)CM(v).The following result is the analogue of the Lifting Lemma (Lemma 0.3.4).Lemma 0.7.1 (Lifting Lemma for spe
ial mat
hings) Let M be a spe
ialmat
hing of a lo
ally �nite ranked poset P , and let u; v 2 P , u � v. Then1. if M(v)C v and M(u)C u then M(u) �M(v);2. if M(v)B v and M(u)B u then M(u) �M(v);3. if M(v)C v and M(u)B u then M(u) � v and u �M(v).Lemma 0.7.1 is a
tually a generalization of the Lifting Lemma and will play animportant role in the sequel.Now restri
t our attention to the 
ase where P is a lower Bruhat interval ofthe symmetri
 group, namely an interval of the form [e; v℄, with v 2 S(n). Inthis 
ase we simply refer to a spe
ial mat
hing of [e; v℄ as a spe
ial mat
hingof v. Every right or left des
ent of v leads to a spe
ial mat
hing of v (this is



0.7 Spe
ial mat
hings 29a
tually true in any Coxeter group). In fa
t, let si 2 DR(v) and de�ne themat
hing � of [e; v℄ by �(u) := usi, for all u 2 [e; v℄. The 
lassi
al LiftingLemma (Lemma 0.3.4) in parti
ular implies that � satis�es the axioms of aspe
ial mat
hing. Analogously, the mat
hing � de�ned by �(u) := siu for allu 2 [e; v℄ is a spe
ial mat
hing whenever si 2 DL(v).The following is a further result on the rigidity of spe
ial mat
hings of per-mutations. It states that a spe
ial mat
hing of a permutation is 
ompletelydetermined by how it a
ts on the atoms.Lemma 0.7.2 Let v 2 S(n) and M;N be two spe
ial mat
hings of v su
h thatM(u) = N(u) for all u � v with l(u) � 1. ThenM(u) = N(u)for all u 2 [e; v℄.The next result we are going to show, is a 
omplete 
hara
terization of thespe
ial mat
hings of v 2 S(n). For this we �rstly need some notation. For alli 2 [n � 1℄ we denote respe
tively by �i; �i : S(n) ! S(n) the multipli
ationson the left and on the right respe
tively by si. In other words, �i(v) := sivand �i(v) := vsi for all v 2 S(n). Now �x i 2 [n � 1℄, and let J = [i℄ andK = [i; n� 1℄. Then we set- li(u) := uJsi Ju;- ri(u) := uKsi Ku;where u = uJ Ju and u = uK Ku are the de
ompositions of u relative to theparaboli
 subgroups S(n)J and S(n)K (see Theorem 0.3.7). We also denote by�i; �i; li and ri any restri
tion of these appli
ations to a proper subset of S(n).Theorem 0.7.3 Let v 2 S(n) and M be a spe
ial mat
hing of v with M(e) =si. Then M is either �i; �i; li or ri.We say that a spe
ial mat
hing M is of type � if M = �i for some i 2 [n � 1℄and we similarly de�ne spe
ial mat
hings of type �, of type l and of type r.Note that a spe
ial spe
ial mat
hing may have more than one type. In fa
t,for example, the unique mat
hing of the trivial interval [e; si℄ has all the types.The proof of Theorem 0.7.3 tells us also that spe
ial mat
hings whi
h are notof type � or � are quite rare. More pre
isely, we have the following results, thatwe state here for future referen
es.



30 Chapter 0. Notation and Ba
kgroundCorollary 0.7.4 Let v 2 S(n).1. If li is a spe
ial mat
hing of v thensi+1sisi�1 � v:2. If ri is a spe
ial mat
hing of v thensi�1sisi+1 � v:Corollary 0.7.5 Let u; v 2 S(n), u � v, J = [i℄ and K = [i; n� 1℄.1. Let li be a spe
ial mat
hing of v and let u = u1u2 with u1 2 S(n)J andu2 2 S(n)K . Then we have either u1 = uJ or u1 = uJsi. In parti
ular,in both 
ases, li(u) = u1siu2:2. Let ri be a spe
ial mat
hing of v and let u = u1u2 with u1 2 S(n)K andu2 2 S(n)J . Then we have either u1 = uK or u1 = uJKsi. In parti
ular,in both 
ases, li(u) = u1siu2:Using the 
lassi�
ation of Theorem 0.7.3, Brenti proves the following result,whi
h is the main theorem of [17℄.Theorem 0.7.6 Let v 2 S(n) and M be a spe
ial mat
hing of v. Then, for allu � v,Ru;v(q) = ( RM(u);M(v)(q); if M(u)C u;qRM(u);M(v)(q) + (q � 1)Ru;M(v)(q); otherwise,and, equivalently,eRu;w(q) = eRM(u);M(w)(q) + �(M(u)B u) q eRu;M(w)(q):Sin
e, by de�nition, the set of the spe
ial mat
hings of v depends only on theisomorphism type of [e; v℄ as a poset, Theorem 0.7.6 is a partial result towardsLusztig 
onje
ture on the 
ombinatorial invarian
e (Conje
ture 0.6.1).



0.7 Spe
ial mat
hings 31Corollary 0.7.7 Let v 2 S(n) and v0 2 S(m) be su
h that [e; v℄ �= [e; v0℄ asposets. Then Pu;v(q) = P'(u);v0(q)Ru;v(q) = R'(u);v0(q)eRu;v(q) = eR'(u);v0(q)for all u � v and all poset isomorphism ' : [e; v℄! [e; v0℄.In Chapter 4 we generalize Theorem 0.7.6 to any Coxeter group, and hen
e we
an prove the analogue of Corollary 0.7.7 for any Coxeter group.
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Chapter 1Boolean elementsIn this 
hapter, we intyrodu
e the Boolean elements and we give the preliminaryresults that make easier the 
ombinatori
s of these elements.1.1 De�nition and preliminary resultsDe�nition. Let (W;S) be any Coxeter system and let t be a re�e
tion in W .As in [49℄, we 
all t a Boolean re�e
tion if it admits a Boolean expression, whi
his, by de�nition, a redu
ed expression s1:::sn�1snsn�1:::s1 with sh 2 S for allh 2 [n℄ and si 6= sj if i 6= j. Call any element x 2 W a Boolean element if it issmaller than a Boolean re�e
tion.We need the following lemma.Lemma 1.1.1 Given a Coxeter system (W;S), let s; t1; : : : ; tn 2 S, s 6= ti forall i 2 [n℄, and l(t1:::tn) = n. Furthermore let ti1 :::tih be a redu
ed subword oft1:::tn su
h that sti1 :::tih � t1:::tns. Then s 
ommutes with every ti1 ; :::; tih .Proof. Sin
e s 6= ti for all i 2 [n℄, sti1 :::tih and t1:::tns are redu
ed expressions.Then there exists a redu
ed subword tj1 :::tjh+1 of t1:::tns su
h thattj1 :::tjh+1 = sti1 :::tihFirst of all, tjh+1 = s be
ause s must appear in tj1 :::tjh+1 whi
h is a subword oft1:::tns and s 6= ti for all i 2 [n℄. By Tits' Word Theorem sti1 :::tih and tj1 :::tjhsare linked by a sequen
e of braid moves. The analysis of this sequen
e give us35



36 Chapter 1. Boolean elementsthe assertion.Let us start from sti1 :::tih . We do all the braid moves until we en
ounter abraid move that involves s. There must be su
h a move in the sequen
e be
auseat the end s will be in the rightmost pla
e. So we rea
h an expression of thefollowing type: sti01 :::ti0hand the next braid move involves s and (ne
essarily) ti01 . Being ti02 6= s, it mustbe �s;ti01 = sti01 , namely s 
ommutes with ti01 . So we do that move and we obtainti01sti02 :::ti0h .At the mth step we rea
h an expression of the following type:ti1 :::tim�1stim :::tihand we have proved that s 
ommutes with every ti1 ; :::; tim�1 . As before, wedo all the following braid moves of the sequen
e till we en
ounter a move thatinvolves s. Again there must be su
h a move in the sequen
e be
ause at theend s will be in the rightmost pla
e. So we rea
h an expression of the followingtype: ti01 :::ti0m�1sti0m :::ti0hIf the following braid move involves s and ti0m�1 we do it and return to the(m�1)th step. If it involves s and ti0m , sin
e s 6= ti0m+1 , it must be �s;ti0m = sti0m ,namely s 
ommutes with ti0m . We do the move obtainingti01 :::ti0msti0m+1 :::ti0hand we pass at the (m + 1)th step, having proved that s 
ommutes also withti0m .At the end of the sequen
e of braid moves we obtain tj1 :::tjhs and we prove thats 
ommutes with every tj1 ; :::; tjh , that is with every ti1 ; :::; tih . �The following lemma essentially says what one gains in Tits' Word Theorem(Theorem 0.3.6) by adding the hypothesis that the element u 2 W is Boolean.A short braid move is, by de�nition, a braid move of the shortest type (namely�s;s0 = ss0). Given any s 2 S and any word v 2 S� (where S� denotes the freemonoid on the set S), we denote by v(s) the number of o

urren
es of the letters in the word v.



1.1 De�nition and preliminary results 37Lemma 1.1.2 Given a Coxeter system (W;S), let u 2W be a Boolean elementand let u be a redu
ed expression of u whi
h is subword of the Boolean expressions1 : : : sn : : : s1. Then:1. any other redu
ed expression u of u whi
h is a subword of s1 : : : sn : : : s1is linked to u by a sequen
e of short braid moves;2. any expression u of u (not ne
essarily redu
ed) whi
h is a subword ofs1 : : : sn : : : s1 is linked to u by a sequen
e of short braid and nil moves.Proof. 1). Let i be the minimum of the j 2 [n℄ su
h that the dispositions ofthe fa
tors sj in u and u are di�erent (i.e. for every h < i, u(sh) = u(sh) andsh appears on the same side in u and in u if u(sh) = u(sh) = 1). Obviouslyu(si) = 0 if and only if u(si) = 0.It is not possible that u(si) 6= u(si). In fa
t, suppose u(si) = 2, u(si) = 1;after 
an
elling from u and u the fa
tors sh for h < i and the fa
tor si in thesame position, we would obtain two redu
ed expressions of the same element,one with and the other without fa
tors si.So u(si) = u(si) = 1. After 
an
elling the fa
tors sh for h < i from u and u, weobtain two redu
ed expressions of the same element, one with only one fa
torsi at the leftmost pla
e and the other with only one fa
tor si at the rightmostpla
e. Sin
e si 6= sj for every i 6= j, by Lemma 1.1.1 si 
ommutes with everysj , j > i, that o

urs in u. Iterating this pro
edure, we get the assertion.2). Let u = t1 : : : tq (ti 2 S) and let r be su
h that t1 : : : tr is redu
ed, butt1 : : : trtr+1 is not. By the Ex
hange Property (Theorem 0.3.1), there exists aunique i su
h that t1 : : : trtr+1 = t1 : : : bti : : : tr (obviously this last expression isredu
ed) and ti+1 : : : trtr+1 = titi+1 : : : tr. Sin
e these are both redu
ed sub-words of s1 : : : sn : : : s1, by 1) they are linked by a sequen
e of short braid moves.So from the expression t1 : : : titi+1 : : : trtr+1 : : : tq , using only short braid moves,we 
an rea
h the expression t1 : : : tititi+1 : : : trtr+2 : : : tq and then we 
an do anil move. By iterating this pro
edure, using only short braid and nil moves, weobtain a redu
ed expression of u whi
h is subword of s1 : : : sn : : : s1. Hen
e theassertion follows by 1). �Corollary 1.1.3 Given a Coxeter system (W;S), let u, u be two redu
ed ex-pressions of the same Boolean element u 2 W whi
h are both subwords of aBoolean expression s1 : : : sn : : : s1. Then u(si) = u(si) for all i 2 [n℄.Proof. It is straightforward from Lemma 1.1.2. �



38 Chapter 1. Boolean elementsNow we state two te
hni
al results that are easy to prove. We assume thatthe linear Coxeter systems have Coxeter graphs of the types in Se
tion 0.4.Proposition 1.1.4 Let (W;S) be a stri
tly linear Coxeter system and let t 2Wbe a Boolean re�e
tion. Then t admits a Boolean expression of one of thefollowing types:1. sasa�1 : : : si+1 sbsb+1 : : : si�1sisi�1 : : : sb+1sb si+1 : : : sa�1sa;2. sbsb+1 : : : si�1 sasa�1 : : : si+1sisi+1 : : : sa�1sa si�1 : : : sb+1sb;for appropriate 0 < b � i � a � n. �Proposition 1.1.5 Let (W;S = fs1; : : : ; sng) be a non-stri
tly linear Coxetersystem and let t 2 W be a Boolean re�e
tion. Then, up to a �rotation� of theindi
es of the generators (that is up to adding a �xed r 2 [n� 1℄ to their indi
esand taking the indi
es modulo n), t admits a Boolean expression of one of thefollowing types:1. sasa�1 : : : si+1 sbsb+1 : : : si�1sisi�1 : : : sb+1sb si+1 : : : sa�1sa;2. sbsb+1 : : : si�1 sasa�1 : : : si+1sisi+1 : : : sa�1sa si�1 : : : sb+1sb;for appropriate 0 < b � i � a � n. If si � t for all i 2 [n℄, we 
an assumea 6= (i+ 1) in 1), b 6= (i� 1) in 2). �1.2 Notation on Boolean permutationsLet us spe
ialize to the 
ase W = S(n + 1). Re
all that the set S of Coxetergenerators is the set of simple transpositions fsi = (i; i+ 1) for all i 2 [n℄g, theset of re�e
tions is the set of transpositionsT (S(n+ 1)) = f(i; j) : 1 � i < j � n+ 1g;and the transposition (i; j) admits sisi+1 � � � sj�2sj�1sj�2 � � � si+1si as a redu
edexpression. So every re�e
tion in the symmetri
 group is Boolean and an ele-ment v is Boolean if and only if v is smaller than the top transposition (1; n+1).Equivalently, v is Boolean if and only if it admits a redu
ed expression whi
his a subword of s1 � � � sn�1snsn�1 � � � s1. Note that a Boolean element 
an haveseveral redu
ed expressions whi
h are all subwords of s1 � � � sn�1snsn�1 � � � s1.



1.2 Notation on Boolean permutations 39Now we introdu
e the notation that will be used in Chapter 2.n-Boolean sequen
es. After Corollary 1.1.3, we denote by ui the numberof o

urren
es of si in any redu
ed expression of u whi
h is a subword of theBoolean expression s1 : : : sn : : : s1 of (1; n + 1). It is sometimes 
onvenient tohandle Boolean elements in terms of sequen
es. So we introdu
e a well-de�nedsurje
tive map � from the interval [e; (1; n+ 1)℄ to the set of the n-Boolean se-quen
es by sending u to (u1; : : : ; un). An n-Boolean sequen
e is a sequen
e(x1; : : : ; xn) of n numbers 
hosen in f0; 1; 2g that avoids the pattern j2; 0j,where j2; 0j-avoidan
e means that there does not exist an i 2 [n � 1℄ su
h that(xi; xi+1) = (2; 0) and that xn 6= 2. All properties are easily 
he
ked.Given a n-Boolean sequen
e x = (x1; : : : ; xn), we de�ne:l(x) = Xi2[n℄xi;p(x) = jfi 2 [n� 1℄ : xi = 1; xi+1 6= 0gj:Then the 
ardinality of the preimage of the sequen
e x is equal to 2p(x) andl(u) = l(�(u)) for all u 2 [e; (1; n+ 1)℄.If we endow the range with the 
omponent-wise partial order, then it is easy to
he
k that � is a morphism of posets.Now we introdu
ed the notation that will be used in Chapter 3.The maps �R(u; v) and �L(u; v). For 
onvenien
e, for all J � S, we iden-tify J with the set fi 2 [n℄ : si 2 Jg. Let w be a Boolean permutation ofS(n + 1). The permutation w 
an have several redu
ed expressions whi
hare subwords of s1 � � � sn�1snsn�1 � � � s1. We 
onsider all these expressions asobtained from s1 � � � sn�1snsn�1 � � � s1 by deleting some letters. For example,
onsider the Boolean permutation w 2 S(4) equal to (1; 2)(3; 4) in the 
y
li
notation. Then w has the following two redu
ed expressions whi
h are obtainedfrom s1s2s3s2s1 in two di�erent ways:(1) s3s1 = bs1 bs2s3 bs2s1(2) s1s3 = s1 bs2s3 bs2 bs1where bs means that s has been deleted. We say that s1 is �on the right� in (1)and �on the left� in (2).Given two Boolean permutations u; v 2 S(n + 1)J , u � v, we want to
onstru
t two (2� n)-re
tangular tableaux with entries in f0; 1l; 1r; 2g.



40 Chapter 1. Boolean elementsSuppose �rst that v 6� s1 � � � sn�1sn. After Lemma 1.1.2, we 
hoose- the unique redu
ed expression v of the permutation v whi
h is a subwordof s1 � � � sn�1snsn�1 � � � s1 and satis�es the 
ondition that, for all k 2 [n�1℄su
h that v(sk) = 1 and v(sk+1) = 0, the letter sk is on the right;- the unique Boolean expression u of u whi
h is a subword of v and satis�esthe further 
ondition that, for all k 2 [n�1℄ su
h that u(sk) = 1, u(sk+1) =0 and v(sk) = 2, the letter sk is on the right.We 
all (u; v) the right Boolean expressions of (u; v). Then �R(u; v) is the2� n-re
tangular tableau : : :u1u2u3 : : :u4 unv1v2v3v4 vnwhere vi (respe
tively ui) is 2, 1l, 1r, or 0 a

ording as to whether v (respe
tivelyu) has two letters si, one letter si on the left, one letter si on the right or noletters si. Finally, we mark the i-th 
olumn with d if i 2 J , with � if i =2 J .The dual 
onditions give rise to the left Boolean expressions of (u; v) and to the(2� n)-re
tangular tableau �L(u; v).For 
onvenien
e, in both tableaux �R(u; v) and �L(u; v), we set vn = 1l ifv(sn) = 1 and un = 1l if u(sn) = 1.For example, if v = s1s3s5s6s7s8s6s5s4 and u = s7s5s3 are permutations ofS(9), then the right Boolean expressions (u; v) of (u; v) are- v = s3s5s6s7s8s6s5s4s1;- u = s3s7s5;the left Boolean expressions (u; v) of (u; v) are- v = s1s3s5s6s7s8s6s5s4;- u = s3s5s7;and, assuming J = f2; 4; 6g, we have�R(u; v) = 0 0 1l 0 1r 0 1l 01r 0 1l 1r 2 2 1l 1l� d dd� � �� �L(u; v) = 0 0 1l 0 1l 0 1l 01l 0 1l 1r 2 2 1l 1ld d d� � � �� :



1.2 Notation on Boolean permutations 41If v � s1 � � � sn�1sn, we de�ne the right and the left Boolean expressions tobe equal, with all the letters on the left. Thus, in this 
ase, �R(u; v) = �L(u; v)and all non-zero entries are equal to 1l.Furthermore, we introdu
e the following notation. Choose one of the twotableaux �R(u; v), �L(u; v). We denote byj : : :� � 
 : : :Æa b 
 d jthe 
ardinality of the set:(i 2 [n℄ : (vi; vi+1; vi+2; vi+3; : : :) = (a; b; 
; d; : : :);(ui; ui+1; ui+2; ui+3; : : :) = (�; �; 
; Æ; : : :) ) :We let a; b; 
; d; : : : ; �; �; 
; Æ; : : : 2 f0; 1l; 1r; 2; 06 ; 26 ; �g where by 06 (respe
-tively 26 ) we mean that the entry must be 6= 0 (respe
tively 6= 2) and where �stands for any entry. As above, if ne
essary, we use d or � to further requirethat a 
olumn belong to J or not. In the previous example,j1l 01l �� j = 2both in �R(u; v) and �L(u; v). In other words, we are 
ounting the sub-tableauxof �R(u; v) or of �L(u; v) mat
hing 1l 01l �� .Now, let v be a Boolean permutation in S(n + 1) and let v be any of itsredu
ed expressions whi
h are subwords of s1 � � � sn�1snsn�1 � � � s1. By Propo-vi�1 vi vi+1� 0 �1l 1l �2, 1l 2 �� 1r 6= 01l 1r 0Table 1.1:sition 0.3.2 and Tits' Word Theorem (Theorem 0.3.6), we have that si =2 DL(v)



42 Chapter 1. Boolean elementsif and only if we are in one of the (mutually ex
lusive) possibilities in Table 1.2,where vi�1, vi, vi+1 en
ode the types of o

urren
es of si�1, si, si+1 in v, andwhere � stands for any entry. In parti
ular, if v is a Boolean permutation inS(n+ 1)J , then this must be true for all i 2 J .



Chapter 2R-polynomials andKazhdan-Lusztig polynomialsIn this Chapter we give some 
losed expli
it produ
t formulae valid in the 
asethat the indexing elements are Boolean. In parti
ular, for any Coxeter system,we 
ompute the R-polynomials, and for any linear Coxeter system we 
omputethe Kazhdan-Lusztig polynomials, the Kazhdan-Lusztig elements and the inter-se
tion homology Poin
aré polynomials. Moreover the formula for the Kazhdan-Lusztig polynomials allows us to prove Lusztig's 
onje
ture of the 
ombinatorialinvarian
e foe Boolean elements and to list all pairs (u; v) of Boolean elementswith u � v, namely with �(u; v) 6= 0.Throughout this 
hapter, when the Coxeter group W is the symmetri
 group,we make use of the notion of n-Boolean sequen
e we introdu
ed in Se
tion 1.2.2.1 R-polynomialsRe
all that for any s 2 S and any word x 2 S� (where S� denotes the freemonoid on the set S), we denote by x(s) the number of o

urren
es of the letters in the word x.Theorem 2.1.1 Given any Coxeter system (W;S), let u; v 2 W be Booleanelements, u � v. Fix a redu
ed expression v of v whi
h is a subword of aBoolean expression s1 : : : sn : : : s1 and a redu
ed expression u of u whi
h is a43



44 Chapter 2. R-polynomials and Kazhdan-Lusztig polynomialssubword of v. Then Ru;v(q) = (q � 1)l(u;v)�2a(q2 � q + 1)a;wherea = �����(i 2 [n℄ : v(si) = 2u(si) = 0 and m(si; sj) = 2, 8j > i su
h that u(sj) 6= 0)����� :In parti
ular, if W = S(n+ 1) and s1; : : : ; sn are the usual Coxeter generatorsof S(n+ 1) , this means that:a = �����(i 2 [n℄ : vi = 2ui = 0 ui+1 = 0 )����� :Proof. We pro
eed by indu
tion on n, the result being 
lear for n = 1.If v(s1) = u(s1) = 0, we 
on
lude right away by indu
tion sin
e u � v �s2:::sn�1snsn�1:::s2. So we suppose v(s1) 6= 0 and fo
us our attention on thenumber and the position of the o

urren
es of s1 in v and u. We have to 
onsiderthe following 
ases, in whi
h ŝ1 means that s1 has been deleted and in whi
hwe do not bother about si, i 6= 1.a1) ( v = s1:::̂:::̂:::sn:::̂:::̂:::ŝ1u = s1:::̂:::̂:::sn:::̂:::̂:::ŝ1Then by Theorem 0.5.2 we get Ru;v(q) = Rs1u;s1v(q) and we 
on
lude by indu
-tion sin
e s1u � s1v � s2:::sn�1snsn�1:::s2.a2) ( v = s1:::̂:::̂:::sn:::̂:::̂:::ŝ1u = ŝ1:::̂:::̂:::sn:::̂:::̂:::ŝ1Then by Theorem 0.5.2 we get Ru;v(q) = qRs1u;s1v + (q � 1)Ru;s1v(q) and we
on
lude by indu
tion sin
e s1u 6� s1v and u � s1v � s2:::sn�1snsn�1:::s2.b1) ( v = ŝ1:::̂:::̂:::sn:::̂:::̂:::s1u = ŝ1:::̂:::̂:::sn:::̂:::̂:::s1Like a1) using the right version of Theorem 0.5.2.b2) ( v = ŝ1:::̂:::̂:::sn:::̂:::̂:::s1u = ŝ1:::̂:::̂:::sn:::̂:::̂:::ŝ1Like a2) using the right version of Theorem 0.5.2.
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1) ( v = s1:::̂:::̂:::sn:::̂:::̂:::s1u = s1:::̂:::̂:::sn:::̂:::̂:::s1Ru;v(q) = Rs1u;s1v(q) = Rs1us1;s1vs1(q) and we 
on
lude by indu
tion sin
es1us1 � s1vs1 � s2:::sn�1snsn�1:::s2.
2) ( v = s1:::̂:::̂:::sn:::̂:::̂:::s1u = s1:::̂:::̂:::sn:::̂:::̂:::ŝ1Ru;v(q) = Rs1u;s1v(q) = qRs1us1;s1vs1(q) + (q� 1)Rs1u;s1vs1 and we 
on
lude byindu
tion sin
e s1us1 6� s1vs1, s1u � s1vs1 � s2:::sn�1snsn�1:::s2.
3) ( v = s1:::̂:::̂:::sn:::̂:::̂:::s1u = ŝ1:::̂:::̂:::sn:::̂:::̂:::s1Like 
2.
4) ( v = s1:::̂:::̂:::sn:::̂:::̂:::s1u = ŝ1:::̂:::̂:::sn:::̂:::̂:::ŝ1We have to distinguish two sub
ases:1) s1u 6� s1vThen we getRu;v(q) = qRs1u;s1v(q)+(q�1)Ru;s1v = (q�1)[qRus1;s1vs1(q)+(q�1)Ru;s1vs1 ℄and we 
on
lude by indu
tion sin
e us1 6� s1vs1, u � s1vs1 � s2:::sn�1snsn�1:::s2.2) s1u � s1vThen we get Ru;v(q) = qRs1u;s1v(q) + (q � 1)Ru;s1v == qRs1us1;s1vs1(q) + (q � 1)[qRus1;s1vs1 (q) + (q � 1)Ru;s1vs1(q)℄ == (q2 � q + 1)Ru;s1vs1(q)being, by Lemma 1.1.1, u = s1us1 and us1 6� s1vs1. So we 
on
lude by indu
tionsin
e u � s1vs1 � s2:::sn�1snsn�1:::s2.Call u0 and v0 the elements whi
h are represented by the expressions weobtain from u and v by deleting all the letters s1. In every 
ase, ex
ept insub
ase 2) of 
ase 
4), we haveRu;v(q) = (q � 1)v(s1)�v(s1)Ru0;v0(q):
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all that we are in sub
ase 2) of 
ase 
4) when v (s1) = 2, u (s1) = 0 ands1u � s1v, namely, by Lemma 1.1.1, when v (s1) = 2, u (s1) = 0 and s1
ommutes with every sj j > 1 su
h that u (sj) 6= 0. In this 
aseRu;v(q) = (q2 � q + 1)Ru0;v0(q):The result follows by iterating this pro
edure. �Example 1 Let us 
al
ulate the R-polynomial indexed by u = s1s2s5s1 andv = s1s2s3s4s5s6s4s3s2s1 in S(7). We immediately �nd that l(u; v) = 6 anda = jf3gj, and therefore Ru;v(q) = (q � 1)4(q2 � q + 1):As a 
orollary of Theorem 2.1.1, we give the proof of Conje
ture 7.7 of [15℄.Corollary 2.1.2 Let u; v 2 S(n) be su
h that u � v � (i; j) for some i; j 2 [n℄,i < j. Then there exists a 2 N su
h thatRu;v(q) = (q � 1)a(q2 � q + 1) 12 [l(u;v)�a℄Proof. It is straightforward from Theorem 2.1.1. In fa
t the transposition(i; j) is a Boolean re�e
tion of Boolean expression sisi+1:::sj�2sj�1sj�2:::si+1si(where, as always, sk = (k; k + 1) for all k). �We think that it is worthwhile to mention the following equivalen
e thatdeals with the R-polynomials whi
h are produ
t of fa
tors of types (q � 1) and(q2 � q + 1), su
h as those of Theorem 2.1.1.Theorem 2.1.3 Given a Coxeter system (W;S), let w 2 W . Then the follow-ing are equivalent:1. a(u; sv) = a(su; sv) + 1 for all u; v � w and s 2 S su
h that u < su �sv < v;2. Ru;v(q) = (q � 1)a(u;v)(q2 � q + 1) 12 [l(u;v)�a(u;v)℄ for all u � v � w;where, for x; y 2 W , x � y, (q � 1)a(x;y) is the largest power of (q � 1) thatdivides Rx;y(q).Proof. Let us prove that 1) implies 2) by indu
tion on l(v). Let s 2 DL(v). Ifs 2 DL(u) or s =2 DL(u) but su 6� sv then we 
on
lude by indu
tion. Otherwise



2.2 Kazhdan-Lusztig polynomials 47Ru;v(q) = qRsu;sv(q) + (q � 1)Ru;sv(q) that, by indu
tive assumption, is equalto q[(q � 1)a(su;sv)(q2 � q+1) 12 [l(su;sv)�a(su;sv)℄℄ + (q � 1)[(q� 1)a(u;sv)(q2 � q+1) 12 [l(u;sv)�a(u;sv)℄℄. By hypothesis, this polynomial is equal to (q�1)a(su;sv)(q2�q + 1) 12 [l(su;sv)�a(su;sv)℄[q + (q � 1)2℄.Conversely �x (if there are) s 2 S su
h that u < su � sv < v. Then Ru;v(q) =qRsu;sv(q)+(q�1)Ru;sv(q) = q[(q�1)a(su;sv)(q2�q+1) 12 [l(su;sv)�a(su;sv)℄+(q�1)[(q�1)a(u;sv)(q2� q+1) 12 [l(u;sv)�a(u;sv)℄℄. But Ru;v(q) = (q�1)a(u;v)(q2� q+1) 12 [l(u;v)�a(u;v)℄ and an easy argument of divisibility shows that this is possibleonly if a(u; sv) = a(su; sv) + 1. �2.2 Kazhdan-Lusztig polynomialsTheorem 2.2.1 Let u and v be Boolean elements in S(n+ 1), u � v. ThenPu;v(q) = (1 + q)b;where b = �����(k 2 [n℄ : vk = 2 vk+1 = 2uk+1 = 0 )����� :Proof. Fix a redu
ed expression v of v whi
h is a subword of the Booleanexpression s1 : : : sn : : : s1 of (1; n+ 1) and a redu
ed expression u of u whi
h isa subword of v. Let us fo
us our attention on the number and the position ofthe fa
tors s1 in v and u. We 
onsider the following 
ases:a) v1 = u1 = 1.We may assume that the letter s1 is at the leftmost pla
e in v and u. Then,by Theorem 0.5.9, we get Pu;v(q) = Ps1u;s1v(q) + qPu;s1v(q) = Ps1u;s1v(q)sin
e u 6� s1v.b) v1 = 1, u1 = 0.We may assume that the letter s1 is at the leftmost pla
e in v. Then,by Corollary 0.5.10, we get Pu;v(q) = Ps1u;v(q) and we 
on
lude thatPu;v(q) = Pu;s1v(q) as in a).
) v1 = u1 = 2.Pu;v(q) = Ps1u;s1v(q) + qPu;s1v(q) = Ps1u;s1v(q) sin
e u 6� s1v. So, as ina), we get Pu;v(q) = Ps1us1;s1vs1(q).



48 Chapter 2. R-polynomials and Kazhdan-Lusztig polynomialsd) v1 = 2, u1 = 1.We may assume that the letter s1 is at the leftmost pla
e in u. By Corol-lary 0.5.10, Pu;v(q) = Ps1u;v(q) and we are in 
ase e).e) v1 = 2, u1 = 0.We must distinguish two sub
ases:1) s1u 6= us1By Lemma 1.1.1, this happens if and only if u2 6= 0, or, equivalently, ifand only if s1us1 is redu
ed. By Corollary 0.5.10 (�rst left and then rightversion), we get Pu;v(q) = Ps1u;v(q) = Ps1us1;v(q) and, as in 
), we getPu;v(q) = Pu;s1vs1 (q).2) s1u = us1Con
erning the fa
tors s2, we have u2 = 0 and two possibilities for v:i) v2 = 1,ii) v2 = 2,(ne
essarily v2 6= 0 sin
e v1 = 2).In i), we may assume that the letter s2 is at the leftmost pla
e in v. Thens2 2 DL(v). So Pu;v(q) = Ps2u;v(q) and we are in 
ase e) 1). We getPu;v(q) = Ps2u;s1vs1(q). As to the fa
tors s2, we are in 
ase a) and we getPu;v(q) = Pu;s2s1vs1(q) �nding that also the fa
tors s2 give no 
ontribution.In ii), we getPu;v(q) = qPs1u;s1v(q) + Pu;s1v(q)� Xz:s12DL(z) q l(z;v)2 �(z; s1v)Pu;z(q):By the fa
t that s1 
ommutes with every si that o

urs in u and byCorollary 0.5.10, we get Ps1u;s1v = Pus1;s1v = Pu;s1v and as in b) we getPu;s1v = Pu;s1vs1 . SoPu;v(q) = (1 + q)Pu;s1vs1 (q)� Xz:s12DL(z) q l(z;v)2 �(z; s1v)Pu;z(q):Now we 
laim that fz : u � z < s1v; s1 2 DL(z)g � fz : s2 6� zg. In fa
t,z < s1v implies that z admits a redu
ed expression z0s1 with z0(s1) = 0.Sin
e s1 2 DL(z), s1z0s1 is not redu
ed and so, by the Ex
hange Property,



2.2 Kazhdan-Lusztig polynomials 49we get that s1z0s1 and z0 represent the same element, as s1z0 is redu
ed.Applying Lemma 1.1.1 to s1z0 = z0s1, we obtain that s1 
ommutes withevery letter that o

urs in z0, namely z0(s2) = 0.Therefore s2 2 DL(s1v) nDL(z), and we �nd thatdegPz;s1v = degPs2z;s1v � 12 (l(z; s1v)� 2)(sin
e s2z 6= s1v). So �(z; s1v) = 0 for all z in the sum and this givesPu;v(q) = (1 + q)Pu;s1vs1(q).In all 
ases, the P -polynomial indexed by u and v is equal to the P -polynomialindexed by the elements that we obtain from u and v by erasing all the fa
torss1, ex
ept in 
ases d) and e) when they fall under the 
ase e)-2)-ii). In these
ases we get a fa
tor (1 + q).By iterating this pro
edure, the result follows. �We illustrate Theorem 2.2.1 with an example.Example 2 Let W = S(8), u = s1s5s7 and v = s1s2s3s4s5s6s7s6s5s3s2s1.Then �(v) = (2; 2; 2; 1; 2; 2; 1)�(u) = (1; 0; 0; 0; 1; 0; 1):There are exa
tly 3 sub-tableaux of the type022in 1 0 0 0 1 0 12 2 2 1 2 2 1 .Therefore Pu;v(q) = (1 + q)3.Note that, similarly, by Theorem 2.1.1, the number of sub-tableaux of the type002
omputes the R-polynomial Ru;v(q).Now we extend this result to other Coxeter systems. The same argument ofthe proof of Theorem 2.2.1 holds for every Coxeter system till we en
ounter the
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ase e)-2), where we strongly use the spe
ial properties of the symmetri
 group.So we need to pro
eed in a di�erent way.We show how Theorems 2.1.1 and 2.2.1, in 
onjun
tion with Lemma 1.1.2, implythe result for stri
tly linear Coxeter systems. First we need the following lemma,where we use the same symbols s1; : : : ; sm for both the generators of W and thegenerators of S(m+ 1).Lemma 2.2.2 Let (W;S = fs1; : : : ; smg) be a stri
tly linear Coxeter system.Let t 2 W be a Boolean re�e
tion with Boolean expression t. Consider the map : [e; t℄W �! S(m + 1) de�ned as follows: if z 2 [e; t℄W admits the redu
edexpression z whi
h is a subword of t, then  (z) is the element of S(m + 1)represented by the same expression z. Then  is an isomorphism of posets from[e; t℄W to [e;  (t)℄S(m+1).Proof. The map  is well de�ned: in fa
t, by Lemma 1.1.2, any two su
hredu
ed expression of the same z 2 W are linked by short braid moves, andW and S(m+ 1) share the same short braid moves. Moreover, the expressiont = t1 : : : tn�1tntn�1 : : : t1 is redu
ed also in S(m + 1). In fa
t, suppose, by
ontradi
tion, that there exists k 2 [n℄ su
h that t1 : : : tn�1tntn�1 : : : tk�1 isredu
ed while t1 : : : tn�1tntn�1 : : : tk is not. Then, 
learly, tk : : : tn�1tntn�1 : : : tkis not redu
ed (by hypothesis, ti 6= tj if i 6= j). Hen
e, by Lemma 1.1.1,tk 
ommutes with tj for all j > k in S(m + 1), and so also in W , and thisis a 
ontradi
tion be
ause t is redu
ed in W . This means that t is a Booleanexpression of the Boolean re�e
tion  (t) of S(m+1). Now Lemma 1.1.2 impliesthat l(z) = l( (z)), for all z 2 [e; t℄W , and that  is an isomorphism of posetsfrom [e; t℄W to [e;  (t)℄S(m+1) by the 
hara
terization of the Bruhat order interms of redu
ed expressions. �Theorem 2.2.3 Let (W;S = fs1; : : : ; smg) be a stri
tly linear Coxeter system.Let u; v 2W be su
h that u � v � t, where t is a Boolean re�e
tion. ThenPu;v(q) = P (u); (v)(q);where  is as in Lemma 2.2.2, and P (u); (v)(q) 
an be 
omputed as in Theo-rem 2.2.1.Proof. First of all we �x a Boolean expression t of t, a redu
ed expression v ofv whi
h is a subword of t and a redu
ed expression u of u whi
h is a subwordof v.
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all that, if an element z has a redu
ed expression z whi
h is a subword ofv, then the map  sends z to the element of S(m+1) represented by the sameexpression z. Theorem 2.1.1 shows that the R-polynomial depends only on the
hosen redu
ed expression and on the 
ommutation relations between the gen-erators of the Coxeter system. So for all x; y 2 [u; v℄W , Rx;y(q) = R (x); (y)(q).Finally property 4) of Theorem 0.5.8, in 
onjun
tion with Lemma 2.2.2, impliesthat the same equality also holds for the P -polynomials. �Example 3 Let (W;S = fs1; s2; s3; s4g) be a stri
tly linear Coxeter system,v = s4s1s2s3s2s1s4, u = s4s1. Then  (v) = s4s1s2s3s2s1s4 = s1s2s3s4s3s2s1 2S(5),  (u) = s4s1 2 S(5), and Pu;v(q) = P (u); (v)(q) = (1 + q)2.The following result deals with the non-stri
tly linear Coxeter systems.Theorem 2.2.4 Let (W;S = fs1; : : : ; smg) be a non-stri
tly linear Coxeter sys-tem. Let u; v 2 W be su
h that u � v � t where t is a Boolean re�e
tion thatwe 
an assume su
h that si � t for all i 2 [m℄. Then there exists b 2 N su
hthat: Pu;v(q) = (1 + q)b:Fix a Boolean expression t = t1 : : : tn�1tntn�1 : : : t1 for t of the type shown inProposition 1.1.5, a redu
ed expression v of v whi
h is a subword of t and aredu
ed expression u of u whi
h is a subword of v. Suppose that tj is, togetherwith t2, the only other generator that does not 
ommute with t1. Then Pu;v(q) =(1+q)b0Pu0;v0(q), where u0 and v0 are the elements represented by the expressionswe obtain by erasing all the letters t1 in u and v, and whereb0 = ( 1; if v(t1) = 2, u(t2) = 0 and u(tj) = 0;0; otherwise.Then 
ompute Pu0;v0(q) as in Theorem 2.2.3 (there are no longer o

urren
es oft1).Proof. We 
an repeat the same argument of the proof of Theorem 2.2.1, re-pla
ing s1 with t1, till we en
ounter the 
ase e)-2), that now means that v has aletter t1 both at the rightmost and at the leftmost pla
e while u has no letterst1, t2, tj . So we get:Pu;v(q) = qPt1u;t1v(q) + Pu;t1v(q)� Xz:t12DL(z) q l(z;v)2 �(z; t1v)Pu;z(q):
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t that t1 
ommutes with every ti that o

urs in u and by Corol-lary 0.5.10, we get Pt1u;t1v = Put1;t1v = Pu;t1v and as in b) we get Pu;t1v =Pu;t1vt1 . SoPu;v(q) = (1 + q)Pu;t1vt1(q)� Xz:t12DL(z) q l(z;v)2 �(z; t1v)Pu;z(q):Now we 
laim that fz : u � z < t1v; t1 2 DL(z)g � fz : t2 6� z; tj 6� zg. Infa
t, z < t1v implies that z admits a redu
ed expression z0t1 with z0(t1) = 0.Sin
e t1 2 DL(z), t1z0t1 is not redu
ed and so, by the Ex
hange Property, weget that t1z0t1 and z0 represent the same element, as t1z0 is redu
ed. ApplyingLemma 1.1.1 to t1z0 = z0t1, we obtain that t1 
ommutes with every letter thato

urs in z0, namely z0(t2) = z0(tj) = 0.Therefore t2 2 DL(t1v) nDL(z), and we �nd thatdegPz;t1v = degPt2z;t1v � 12 (l(z; t1v)� 2)(sin
e t2z 6= t1v). So �(z; t1v) = 0 for all z in the sum and this gives Pu;v(q) =(1 + q)Pu;t1vt1(q).Now, sin
e u0 � v0 � t2 : : : tn�1tntn�1 : : : t2, we 
an think of our elements as inthe stri
tly linear Coxeter system (W 0; S n ft1g). �Remarks. It is worthwhile to remark the following fa
ts.1. If the Coxeter system is not irredu
ible, and S = SSi is the de
ompositioninto irredu
ible 
omponents, then the expression t1 : : : tn�1tntn�1 : : : t1 isredu
ed only if all the generators tj belong to the same Si.2. If W = S(n), it is easy to see that a Boolean permutation v is always
ovexillary (3412 avoiding). Therefore, the polynomial Pu;v(q) 
an alsobe 
omputed using the algorithm given in [44℄. However, it seems tobe di�
ult to derive the expli
it formulae of Theorem 2.2.1 from thisalgorithm if v < (1; n).3. The results in this se
tion do not hold for general Coxeter systems. In fa
t,let (W;S) be a Coxeter system su
h that S 
ontains s1, s2, s3 and r withm(si; sj) = 2 for all i 6= j, m(si; r) � 3 for all i. Then Pu;v(q) = 1 + 2q,where v = s1s2rs3rs2s1, u = s3s2s1.
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e 532.3 Combinatorial invarian
eIn this se
tion we prove that Lusztig's 
onje
ture of the 
ombinatorial invarian
e(Conje
ture 0.6.1) is true for Boolean elements in stri
tly linear Coxeter groups.More pre
isely, we prove that, given two Boolean elements u and v in a stri
tlylinear Coxeter group W , the polynomial Pu;v(q) 
an be easily 
omputed froml(u; v), 
1(u; v) and 
2(u; v), where
i(u; v) := jCi(u; v)j;Ci(u; v) := fz 2 [u; v℄ : l(z; v) = ig;for i = 1; 2. The elements of C1(u; v) are the 
oatoms of [u; v℄.Furthermore, let gi(u; v) = jGi(u; v)j and hi(u; v) = jHi(u; v)j, whereGi(u; v) := fz 2 [u; v℄ : z�1v 2 T (W ); l(z; v) = (1 + 2i)g;Hi(u; v) := fz 2 [u; v℄ : u�1z 2 T (W ); l(u; z) = (1 + 2i)g;for all possible i 2 N. Thanks to the following theorem due to Dyer [32℄, theyare all 
ombinatorial invariants of [u; v℄ as a poset.Theorem 2.3.1 Let (W;S) be a Coxeter system, u; v 2 W . The isomorphismtype of the poset [u; v℄ determines the isomorphism type of its Bruhat graph.As we 
an dedu
e from (6), if l(u; v) � 4, the R-polynomial Ru;v(q) dependsonly on gi(u; v) and hi(u; v). At the end of this se
tion we show that this is nottrue in general, and we give a 
ounterexample. The smallest S(n) in whi
h we
an �nd a 
ounterexample for Boolean elements is S(10).Let us �rst 
onsider the 
ase u and v Boolean elements in S(n + 1). Tosimplify notation, we setXj;kl;m := jfi 2 [n℄; vi = j vi+1 = kui = l ui+1 = m gj:In parti
ular, X2;�1;6=0 means that vi = 2, vi+1 
an be any number, ui = 1 andui+1 must be di�erent from 0. We write, respe
tively, a(u; v) and b(u; v) forthe exponents in Theorem 2.1.1 and in Theorem 2.2.1, and we always omit thedependen
e on (u; v) when no 
onfusion arises.In the proof of the following results, we use Tits' Word Theorem (Theorem 0.3.6)
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it mention.Proposition 2.3.2 Let u and v be Boolean elements in S(n+1), u � v. Then
1 = l + b� a; (2.1)
2 = l2(l � 1) + b� a2 (b� a+ 2l� 3)� b: (2.2)Proof. Equation (2.1) follows from a result of Brenti [11℄, valid in any CoxetersystemW and for any x; y 2W . It states that 
1(x; y) is equal to the 
oe�
ientof q in Px;y(q) (in this 
ase b by Theorem 2.2.1) minus (�1)l times the 
oe�
ientof q in Rx;y(q) (in this 
ase (�1)l+1(l � a) by Theorem 2.1.1).Fix a redu
ed expression v of v whi
h is a subword of the Boolean expressions1 : : : sn : : : s1 of (1; n+ 1) and a redu
ed expression u of u whi
h is a subwordof v. Then u is obtained from v by deleting l letters. We have that
2 = jAj � jBj2 + jCj;where:� A is the set of the redu
ed expressions z we 
an obtain from v by deletingonly 2 letters of those we deleted to obtain u;� B � A�A is the set of pairs (z; z) of distin
t expressions in A su
h that zand z are linked by short braid moves, and so represent the same element;� C is the set of the redu
ed expressions z su
h that:� z is obtained from v by deleting 2 letters, si and sj , su
h that at leastone of them, say si, is not deleted in u;� z does not represent an element already represented by an expressionin A;� u is linked by short braid moves to a subword of z.Let us 
al
ulate jAj, jBj and jCj.A). Let z be an expression we obtain from v by deleting two fa
tors, say siand sj , of those we deleted to obtain u. It fails to be redu
ed if and only if forat least one between i and k, say i, we have (z(si�1); z(si)) = (2; 0). If i = j,this happens only if (vi�1; vi) = (2; 2) and ui = 0. If i 6= j, this happens onlyif (vi�1; vi) = (2; 1) and ui = 0; in this 
ase, the other fa
tor sj we are deleting
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an be any of the other letters of v that are deleted in u, ex
ept si�1. Theseare l� 2 if ui�1 = 1, l� 3 if ui�1 = 0. Being 
areful not to 
ount twi
e the 
ase(z(si�1); z(si); z(sk�1); z(sk)) = (2; 0; 2; 0), we get:jAj =  l2 !�0B�X2;2�;0 + 2+X2;10;0Xk=3 (l � k) + 1+X2;11;0+X2;10;0Xk=2+X2;10;0 (l � k)1CA ;that, being X2;2�;0 = b by Theorem 2.2.1, be
omes:jAj =  l2 !�0�b+ 1+X2;1�;0Xk=3 (l � k)1A� (l � 2�X2;10;0 ):B). Let z and z be two di�erent expression in A linked by braid moves. Ne
-essarily, to obtain z and z, we have deleted letters of the same type, say si andsj . Suppose that we have deleted the si on the left to obtain z and on theright to obtain z (so ne
essarily vi = 2). If z and z are linked by braid moves,then zi+1 = 0. But vi+1 6= 0 be
ause vi = 2, and so j must be i + 1. Hen
ejBj2 = X2;10;0 .C). Ne
essarily vi = 2, ui = 1 and ui+1 = 0, while zi+1 6= 0 otherwise z wouldrepresent an element already represented by an expression in A. The element
 of expression 
 equal to v with only the sj deleted is a 
oatom. In fa
t itis redu
ed, otherwise it should be vj = 1 and j = i + 1 (z is redu
ed), butzi+1 6= 0. Conversely, we obtain an element of those we are now 
ounting fromevery 
oatom 
 with 
i = 2 deleting the letter si not deleted in u. The numberof su
h 
oatoms is (
1�2) for all i su
h that vi = 2, ui = 1 and ui+1 = 0. Being
areful to 
ount without repetition, we get:jCj = X2;�1;0+1Xk=2 (
1 � k);that, by (2.1), be
omes: jCj = X2;�1;0+1Xk=2 (l + b� a� k):



56 Chapter 2. R-polynomials and Kazhdan-Lusztig polynomialsBeing X2;�0;0 = a by Theorem2.1.1, our assertion is proved. �Now we are able to prove the main theorem of this se
tion.Theorem 2.3.3 Let (W;S) be a stri
tly linear Coxeter system, u and v beBoolean elements of W . Then Ru;v(q) = (q� 1)l�2a(q2 � q+1)a and Pu;v(q) =(1 + q)b where a = 2l+ 
12 (
1 � 5)� 
2;b = l + 
12 (
1 � 3)� 
2:Proof. If W = S(n + 1), the result follows 
ombining (2.1) and (2.2). Oth-erwise, by the proof of Theorem 2.2.3, [u; v℄ is poset-isomorphi
 to a 
ertaininterval in S(n), for an appropriate n, and share the same Kazhdan-Lusztigpolynomial with it. This proves our assertion. �Finally we show that 
onsidering only the gi and the hi is not the right wayto ta
kle Lusztig's 
onje
ture. In fa
t, we have the following example.Example 2.3.4 Let W = S(10),v = s1s2s3s4s5s6s7s8s9s4s3s2s1; v0 = s1s2s3s4s5s6s7s8s9s8s7s5s4s2s1;u = s1s4; u0 = s1s4s7s9:Then �(v) = (2; 2; 2; 2; 1; 1; 1; 1; 1) �(v0) = (2; 2; 1; 2; 2; 1; 2; 2; 1)�(u) = (1; 0; 0; 1; 0; 0; 0; 0; 0) �(u0) = (1; 0; 0; 1; 0; 0; 1; 0; 1)and l = 11, 
1 = g0 = 12, h0 = 10, h1 = 4, and g1 = gi = hi = 0, fori > 1, for both the intervals [u; v℄ and [u0; v0℄. However Pu;v = (1 + q)2 whilePu0;v0 = (1 + q)3. Of 
ourse, this agrees with the result in Theorem 2.3.3 sin
e
2(u; v) = 63 while 
2(u0; v0) = 62.2.4 The top 
oe�
ientIn this se
tion we 
lassify all those Kazhdan-Lusztig polynomials indexed byBoolean elements in a linear Coxeter system (W;S) whi
h have the highestpossible degree. These parti
ular polynomials play a fundamental role in the
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onstru
tion of the Kazhdan-Lusztig representations (see [40℄). Moreover theyappear in the re
ursive property of Theorem 0.5.9, and so Corollaries 2.4.1, 2.4.2and 2.4.3 have appli
ations in the 
omputation of generi
 Kazhdan-Lusztig poly-nomials (see [23, 24℄).Let us treat �rst the 
aseW = S(n+1), and let us handle the Boolean elementsin S(n+ 1) in terms of n-Boolean sequen
es (see Se
tion 1.2).Corollary 2.4.1 Let u; v 2 S(n+1) be Boolean elements su
h that l(u; v) > 1.Then u � v if and only if there exist 1 � l1 < l2 < n su
h thatvk = uk; if 1 � k < l1;vk = 2 and uk = 1; if k = l1;vk = 2 and uk = 0; if l1 < k � l2;vk = uk; if l2 < k � n:Proof. The proof 
omes from the analysis of the proof of Theorem 2.2.1.Fix a redu
ed expression v of v whi
h is a subword of s1 : : : sn : : : s1 and aredu
ed expression u of u whi
h is a subword of v. To simplify, we de�nePj to be the Kazhdan-Lusztig polynomial indexed by the elements having asredu
ed expressions u and v with all the letters s1; : : : ; sj deleted. For example,if v = s1s2s3s4s3s1 and u = s1s4, then P2 = Ps4;s3s4s3(q).Suppose that vk = uk, for 1 � k < l1, and vl1 > ul1 . Then Pu;v(q) = Pl1�1 andPl1�1 is a Kazhdan-Lusztig polynomial indexed by elements whose di�eren
eof the length is l(u; v). If (vl1 ; vl1+1; ul1 ; ul1+1) =2 f(2; 2; 0; 0); (2; 2; 1; 0)g, thenPu;v(q) = Pl1 but Pl1 is indexed by elements whose di�eren
e of the length is< l(u; v), and so Pu;v(q) 
annot have maximum degree allowed (by hypothesisl(u; v) > 1 and so Pl1 is not indexed by equal elements if vl1 = ul1 + 1).Suppose now that:(vl1 ; vl1+1; : : : ; vn) = (2; 2; : : : ; 2; vl2+1 = f; �; : : : ; �)(ul1 ; ul1+1; : : : ; un) = (x; 0; : : : ; 0; ul2+1 = g; �; : : : ; �)where x 2 f1; 0g and (f; g) 6= (2; 0).Then Pu;v(q) = (1 + q)l2�l1Pl2 and Pl2 is indexed by elements whose di�eren
eof the length is (l(u; v)� 2(l2� l1+1)+ x). If Pu;v(q) has degree 12 (l(u; v)� 1)then Pl2 has degree 12 (l(u; v)� 1� 2(l2 � l1)). This happens if and only if x = 1and Pl2 is indexed by equal elements. �Example 4 The Kazhdan-Lusztig polynomial indexed by u = s1s3s7s4s3s2 and



58 Chapter 2. R-polynomials and Kazhdan-Lusztig polynomialsv = s1s3s4s5s6s7s6s5s4s3s2 in S(8) has the highest possible degree. In fa
t, theBoolean sequen
es (1; 1; 2; 1; 0; 0; 1) and (1; 1; 2; 2; 2; 2; 1) asso
iated to u and vsatisfy the requirement of Corollary 2.4.1 with l1 = 4 and l2 = 6.The 
ase of (W;S) being generi
 linear Coxeter system is treated by the followingtheorems, whose proofs easily derive from Theorems 2.2.3 and 2.2.4.Corollary 2.4.2 Under the hypotheses of Theorem 2.2.3, assume l(u; v) > 1.Then u � v if and only if  (u) �  (v) in (m+ 1). �Let W be a non-stri
tly linear Coxeter system, w 2 W be a Boolean element,and w be a redu
ed expression of w whi
h is a subword of the Boolean expres-sion t1 : : : tn�1tntn�1 : : : t1. We denote by iL;tk(w) and iR;tk(w) the elementsrepresented by the expressions we obtain by inserting a fa
tor tk to the leftand to the right, respe
tively, in the appropriate position in w. For instan
e, ifw = t1t3t4t2t1, then iL;t2(w) = t1t2t3t4t2t1 and iR;t3(w) = t1t3t4t3t2t1.Corollary 2.4.3 Under the hypotheses of Theorem 2.2.4, assume l(u; v) > 1.Denote by u0 and v0 the elements represented by the expressions we obtain bydeleting all the letters t1 in u and v. Then u � v if and only if either- v(t1) = u(t1) and u0 � v0; or- (v(t1); u(t1); u(t2); u(tj)) = (2; 1; 0; 0) and there existsw 2 fiL;t2(u0); iR;t2(u0); iL;tj (u0); iR;tj (u0)g su
h that w � v0: �2.5 Kazhdan-Lusztig elementsConsider the basis C of the He
ke algebra H asso
iated to a Coxeter system(W;S) appearing in Theorems 0.5.4. In this se
tion we 
ompute those Kazhdan-Lusztig elements whi
h are indexed by Boolean elements in any linear Coxetersystem. For any expression x = si1 : : : sir , we set C(x) := Csi1 : : : Csir .First we treat the 
aseW = S(n+1). If x is a subword of s1 : : : sn�1snsn�1 : : : s1su
h that x(sk) = 2 and x(sk+1) = 1, we denote by Ck(x) the element weobtain from C(x) by deleting the fa
tor Csk+1 and one of the two fa
tors Csk(by Proposition 0.5.5, it is easy to see that it does not matter whi
h one). Weextend this notation to CK(x), for any K � [n℄, making the same deletions forevery k 2 K.



2.5 Kazhdan-Lusztig elements 59Theorem 2.5.1 Let w 2 S(n+1) be a Boolean element. Fix a redu
ed expres-sion w of w whi
h is a subword of s1 : : : sn : : : s1 and let V = fk 2 [n℄ : wk =2; wk+1 = 1g. Then: Cw = XK�V (�1)jKjCK(w):Proof. We use the re
ursive property of Proposition 0.5.5 applied to s1.If w1 = 1, and if we assume that the fa
tor s1 is on the left in w, then Cw =Cs1Cs1w be
ause s1 6� s1w.If w1 = 2, ne
essarily w2 6= 0. Fix a redu
ed expression z, whi
h is a subword ofs1w, for any element z in fz � s1w : s1 2 DL(z)g. Then z has a fa
tor s1 on theright and, by Lemma 1.1.1, z(s2) = 0. Hen
e, by Corollary 2.4.1, �(z; s1w) 6= 0if and only if l(z; s1w) = 1, that is to say if and only if s2z = s1w. This meansthat the sum is nonzero if and only if w2 = 1, and, assuming that w has only onefa
tor s2 on the left, we have Cw = Cs1Cs1w � Cs2s1w. Applying the re
ursiveproperty in its right version, we get:Cw = Cs1Cs1ws1Cs1 � Cs2s1ws1Cs1 :The result follows by iterating this pro
edure. �As a 
orollary, we have the following ni
e fa
torization.Corollary 2.5.2 Let w 2 S(n + 1) be a Boolean element. Fix a redu
ed ex-pression w of w whi
h is a subword of s1 : : : sn : : : s1 and let V 0 = V +1 = fk 2[n℄ : wk�1 = 2; wk = 1g. Then Cw is obtained from C(w) by 
hanging the fa
torCsk to [Csk � (q 12 + q� 12 )�1Ce℄ for all k 2 V 0.Proof. The assertion follows by the multipli
ation rule of Proposition 0.5.5. �Example 5 Let w = s1s2s3s5s4s3s1 2 S(6). Then V = f1; 3g andCw = Cs1Cs2Cs3Cs5Cs4Cs3Cs1�Cs3Cs5Cs4Cs3Cs1�Cs1Cs2Cs3Cs5Cs1+Cs3Cs5Cs1 ;while V 0 = f2; 4g and we obtain the fa
torization:Cw = Cs1 [Cs2 � (q 12 + q� 12 )�1Ce℄Cs3Cs5 [Cs4 � (q 12 + q� 12 )�1Ce℄Cs3Cs1 :Now we treat the 
ase of a stri
tly linear Coxeter system (W;S). Let t 2 T (W )be a Boolean re�e
tion with Boolean expression t = t1 : : : tn�1tntn�1 : : : t1 that



60 Chapter 2. R-polynomials and Kazhdan-Lusztig polynomialswe 
an assume equal tosasa�1 : : : si+1 sbsb+1 : : : si�1sisi�1 : : : sb+1sb si+1 : : : sa�1saby Proposition 1.1.4. Suppose that tj is si+1. As before, if x is a subword oft1 : : : tn�1tntn�1 : : : t1 su
h that x(tk) = 2 and x has only one fa
tor tk0 , k0 > k,that does not 
ommute with tk (tk0 = tk+1, if k 6= j, tk0 = tn, if k = j), wedenote by Ck(x) the element we obtain from C(x) by deleting the fa
tor Ctk0and one of the two fa
tors Ctk . We extend this notation to CK(x), for anyK � [n℄, making the same deletions for every k 2 K. Keeping these notations,we have the following.Theorem 2.5.3 Let (W;S = fs1; : : : ; smg) be a stri
tly linear Coxeter sys-tem, w 2 W , w � t. Fix a redu
ed expression w of w whi
h is a subword oft1 : : : tn : : : t1, and let V 0 = fk 2 [n℄ n fjg : w(tk) = 2; w(tk+1) = 1g andV = ( V 0 [ fjg if w(tj) = 2, w(tn�1) 6= 2 ,V 0 otherwise.Then Cw = XK�V (�1)jKjCK(w):Proof. The proof of Theorem 2.5.1 holds repla
ing s1 with t1, ex
ept whent1 = tj . Let us treat this 
ase.If w(tj) = 1, and if we assume that the fa
tor tj is on the left in w, thenCw = CtjCtjw be
ause tj 6� tjw.If w(tj) = 2, ne
essarily w(tn) = 1. Fix a redu
ed expression z, whi
h is asubword of tjw, for any element z in fz � tjw : tj 2 DL(z)g. Then z has afa
tor tj on the right and, by Lemma 1.1.1, z(tn) = 0. Hen
e, by Corollary 2.4.2,�(z; tjw) 6= 0 if and only if l(z; tjw) = 1, that is to say if and only if z is obtainfrom tjw by deleting the fa
tor tn. Su
h expression z would be redu
ed only ifw(tn�1) 6= 2. In this 
ase, we have Cw = CtjCtjw �Cz . Applying the re
ursiveproperty in its right version, we get:Cw = CtjCtjwtjCtj � CztjCtj :The assertion follows by iteration. �Theorem 2.5.4 Let (W;S = fs1; : : : ; smg) be a non-stri
tly linear Coxeter sys-



2.6 Poin
aré polynomials 61tem, t 2 T (W ) be a Boolean re�e
tion. Let w 2 W , w � t be su
h that si � wfor all i 2 [m℄. Fix a Boolean expression t = t1 : : : tm : : : t1 of the type of Propo-sition 1.1.5 and a redu
ed expression w of w whi
h is a subword of t. ThenCw =8><>: Ct1Cw0Ct1 ; if w(t1) = 2,Ct1Cw0 ; if w has only a fa
tor t1 at the leftmost pla
e,Cw0Ct1 ; if w has only a fa
tor t1 at the rightmost pla
e,where w0 is the element represented by the expression we obtain from w by eras-ing all the fa
tors t1. Hen
e Cw0 
an be 
omputed as in Theorem 2.5.3.Proof. We use the re
ursive property of Proposition 0.5.5 applied to t1.If w(t1) = 1, and if we assume that the fa
tor t1 is on the left, then Cw = Ct1Ct1wbe
ause t1 6� t1w.Let w(t1) = 2. Suppose that tj is, together with t2, the only other generatorthat does not 
ommute with t1. Fix a redu
ed expression z, whi
h is a subwordof t1w, for any element z in fz � t1w : t1 2 DL(z)g. Ne
essarily, z has a fa
tort1 on the right and, by Lemma 1.1.1, z(ti) = 0 for i = 2; j. Hen
e l(z; t1w) > 1and �(z; t1w) 6= 0 by Corollary 2.4.3. So Cw = Ct1Ct1w. Applying the re
ursiveproperty of Proposition 0.5.5 in its right version, we getCw = Ct1Ct1wt1Ct1 ;and the assertion is proved. �2.6 Poin
aré polynomialsGiven v 2 W , de�ne Fv(q) :=Pu�v ql(u)Pu;v(q). It is known that, if W is anyWeyl or a�ne Weyl group, Fv(q) is the interse
tion homology Poin
aré polyno-mial of the S
hubert variety indexed by v (see [41℄). In this se
tion, we want to
ompute these polynomials when W is a linear Coxeter system and v 2 W is aBoolean element.First let us do this 
omputation for W = S(n + 1), where we treat theBoolean elements in terms of n-Boolean sequen
es as in Se
tion 1.2. Let usrestri
t the domain of � to the interval [e; v℄. Given any Boolean sequen
e



62 Chapter 2. R-polynomials and Kazhdan-Lusztig polynomialsu = (ui; : : : ; un) � �(v) in the 
omponent-wise partial order, we de�nen(u; �(v)) := jfi 2 [n� 1℄ : vi = 2; ui = 1; ui+1 6= 0gj;b(u; �(v)) := jfi 2 [n� 1℄ : vi = 2; vi+1 = 2; ui+1 = 0gj:With these notations, ��1j[e;v℄(u) = 2n(u;�(v));and, by Theorem 2.2.1,Fv(q) = Xu��(v) ql(u)(1 + q)b(u;�(v))2n(u;�(v)):We have the following theorem.Theorem 2.6.1 Let v 2 S(n+ 1) be a Boolean element. ThenFv(q) = (1 + q)l(v)�2f(v)(1 + q + q2)f(v);where f(v) is the number of o

urren
es of the pattern j2; 1j in the sequen
e�(v).Proof. We pro
eed by indu
tion on l(v). When not spe
i�ed, a sequen
e ismeant to be Boolean, and we write v instead of �(v) to simplify notation.We distinguish 2 
ases.1) v1 = 1.If we split the sum into two sums a

ording as to whether u1 = 0 or u1 = 1, weobtain:Fv(q) = Xu�v[2℄ ql(u)(1 + q)b(u;v)2n(u;v) + Xu�v : u1=1 ql(u)(1 + q)b(u;v)2n(u;v);where, for all i 2 [n℄, v[i℄j = ( vj ; if j � i,0; otherwise.Note that if v is Boolean, so is v[i℄ for all i.Clearly b(u; v) = b(u; v[2℄) and n(u; v) = n(u; v[2℄). Sending u to u[2℄, we obtaina bije
tion between the sequen
es u � v su
h that u1 = 1 and the sequen
es u �v[2℄. Sin
e l(u) = l(u[2℄) + 1, b(u; v) = b(u[2℄; v[2℄) and n(u; v) = n(u[2℄; v[2℄),



2.6 Poin
aré polynomials 63we get:Fv(q) = Xu�v[2℄ ql(u)(1 + q)b(u;v[2℄)2n(u;v[2℄) + Xu�v[2℄ ql(u)+1(1 + q)b(u;v[2℄)2n(u;v[2℄);that is Fv(q) = (1 + q)Fv[2℄(q), and we 
on
lude by indu
tion.2) v1 = 2.Splitting the sum, we get:Fv(q) = Xu�v : u1 6=2 ql(u)(1 + q)b(u;v)2n(u;v) + Xu�v : u1=2 ql(u)(1 + q)b(u;v)2n(u;v):Being u1 6= 2, the �rst sum is over all the sequen
es u � v0, wherev0j = ( vj ; if j 6= 1,1; if j = 1,and b(u; v) = ( b(u; v0) + 1; if v2 = 2 and u2 = 0,b(u; v0); otherwise,n(u; v) = ( n(u; v0) + 1; if u1 = 1 and u2 6= 0,n(u; v0); otherwise.As to the se
ond sum, there is a bije
tion between the sequen
es u � v su
hthat u1 = 2 and the sequen
es u � v0 su
h that u1 = 1 and u2 6= 0. Thisbije
tion sends u to u0 (similar de�nition as for v0). Clearly l(u) = l(u0) + 1,b(u; v) = b(u0; v0) and n(u; v) = n(u0; v0).Then, if v2 = 2, 
ombining all these fa
ts we obtain:Fv(q) = (1 + q) Xu�v0 : u2=0 ql(u)(1 + q)b(u;v0)2n(u;v0)+ 2 Xu�v0 : u1=1 u2 6=0 ql(u)(1 + q)b(u;v0)2n(u;v0)+ Xu�v0 : u1=0 u2 6=0 ql(u)(1 + q)b(u;v0)2n(u;v0)+ q Xu�v0 : u1=1 u2 6=0 ql(u)(1 + q)b(u;v0)2n(u;v0):



64 Chapter 2. R-polynomials and Kazhdan-Lusztig polynomialsBy an easy bije
tion sending u to u[2℄,Xu�v0 : u1=1 : u2 6=0ql(u)(1+ q)b(u;v0)2n(u;v0) = q Xu�v0 : u1=0 u2 6=0ql(u)(1+ q)b(u;v0)2n(u;v0)and hen
e we obtain Fv(q) = (1+q)Fv0(q) = (1+q)2Fv[2℄; where the last equalityfollows by 
ase 1). So we 
on
lude by indu
tion.On the other hand, if v2 = 1, we obtainFv(q) = (1 + q)2Fv[2℄ � q Xu�v0 : u2=0 ql(u)(1 + q)b(u;v0)2n(u;v0)Now, by 
ase 1), Fv[2℄ = (1 + q)Fv[3℄, whileXu�v0 : u2=0 ql(u)(1 + q)b(u;v0)2n(u;v0) = Xu�v0 : u1=0 : u2=0 ql(u)(1 + q)b(u;v0)2n(u;v0)+ Xu�v0 : u1=1 : u2=0 ql(u)(1 + q)b(u;v0)2n(u;v0)whi
h is equal to Fv[3℄ + qFv[3℄.Hen
e:Fv(q) = (1 + q)3Fv[3℄ � (q + q2)Fv[3℄(q) = (1 + q)(1 + q + q2)Fv[3℄;and we 
on
lude by indu
tion. �Example 6 Let v 2 S(8), v = s1s2s4s5s6s7s5s4s3s2. Then the Boolean se-quen
e asso
iated to v is (1; 2; 1; 2; 2; 1; 1), f(v) = 2 and Fv(q) = (1+q)l(v)�4(1+q + q2)2.The following two theorems treat respe
tively the 
ase of a stri
tly and of anon-stri
tly linear Coxeter system.Theorem 2.6.2 Let (W;S = fs1; : : : ; smg) be a stri
tly linear Coxeter system,t 2 W a Boolean re�e
tion and v 2W , v � t. Then Fv(q) = F (v)(q), where  is as in Lemma 2.2.2 and F (v)(q) 
an be 
omputed as in Theorem 2.6.1.Proof. Clear sin
e  : [e; v℄W ! [e;  (v)℄S(m+1) is an isomorphism of posets



2.6 Poin
aré polynomials 65preserving the length and Pu;v(q) = P (u); (v)(q) for all u 2 [e; v℄W by Theo-rem 2.2.3. �Theorem 2.6.3 Let (W;S = fs1; : : : ; smg) be a non-stri
tly linear Coxeter sys-tem, t 2 T (W ) a Boolean re�e
tion that we 
an assume su
h that si � t for alli 2 [m℄, and v 2 W , v � t. Fix a Boolean expression t = t1 : : : tn�1tntn�1 : : : t1of t of the type shown in Proposition 1.1.5 and a redu
ed expression v of v whi
his a subword of t. Then Fv(q) = (1 + q)v(t1)Fv0(q), where v0 is the element ofW represented by the expression we obtain from v by deleting all the letters t1and Fv0(q) 
an be 
omputed as in Theorem 2.6.2.Proof. Suppose that tj is, together with t2, the only other generator that doesnot 
ommute with t1, and �x, for any element u � v, an expression u of u whi
his a subword of v. Let us denote by u0 the element represented by the expressionwe obtain from u by deleting all the letters t1. We distinguish 2 
ases.1) v(t1) = 1.If we split the sum into two sums, by Theorem 2.2.4, we obtain:Fv(q) = Xu(t1)=1 ql(u)Pu0;v0 + Xu(t1)=0 ql(u)Pu;v0 :Sin
e in the �rst sum l(u) = l(u0) + 1 and sin
e there is a bije
tion between thetwo sets over whi
h we are summing, we get:Fv(q) = (1 + q)Fv0(q):2) v(t1) = 2Splitting the sum, we obtain:Fv(q) = Xu(t1)=2 ql(u)Pu;v + Xu(t1)=1 ql(u)Pu;v + Xu(t1)=0 ql(u)Pu;v :After some simpli�
ations by means of Theorem 2.2.4 and of natural maps, the�rst sum gets equal to: X(u0(t2);u0(tj))6=(0;0) ql(u0)+2Pu0;v0 ;



66 Chapter 2. R-polynomials and Kazhdan-Lusztig polynomialsthe se
ond to:2 X(u0(t2);u0(tj))6=(0;0) ql(u0)+1Pu0;v0 + (1 + q) X(u0(t2);u0(tj))=(0;0) ql(u0)+1Pu0;v0 ;(the �2� 
omes out from the fa
t that the map is 2 to 1), the third toX(u0(t2);u0(tj))6=(0;0) ql(u0)Pu0;v0 + (1 + q) X(u0(t2);u0(tj))=(0;0) ql(u0)Pu0;v0 :By adding the summands, we �nally obtain:Fv(q) = (1 + q)2Fv0 ;and the assertion is proved. �Remark. The polynomials Fv(q) 
omputed in this se
tion are all symmetri
and unimodal. For Weyl or a�ne Weyl groups W , this is a 
onsequen
e of thefa
t that (middle perversity) interse
tion 
ohomology satis�es Poin
aré dualityand the �Hard Lefs
hetz Theorem�. So this result is 
onsistent with the ideathat there may be geometri
 obje
ts asso
iated to any Coxeter group analogousto S
hubert varieties.



Chapter 3Paraboli
 R-polynomials andKazhdan-Lusztig polynomialsThis 
hapter deals 
on
retely with the 
omputation of the paraboli
 analoguesof the Kazhdan-Lusztig and R-polynomials for the symmetri
 group. We give
losed 
ombinatorial produ
t formulae for the paraboli
 R-polynomials of bothtypes q and �1, and for the paraboli
 Kazhdan-Lusztig polynomials of type q.These formulae are valid in the 
ase that the indexing permutations are Boolean,and with no restri
tions on the paraboli
 subgroupWJ . These paraboli
 Kazhdan-Lusztig and R-polynomials turn out to depend on the number of o

urren
es of
ertain sub-tableaux in a �xed tableau asso
iated to the indexing permutations.Throughout this 
hapter, we make use of the notion of the maps �R(u; v) and�L(u; v) we introdu
ed in Se
tion 1.2.3.1 Paraboli
 R-polynomialsLet u; v 2 S(n + 1)J , u � v, be two Boolean permutations. In this se
tionwe give a 
losed 
ombinatorial formula for the paraboli
 R-polynomials of bothtypes q and �1 indexed by u and v. In this formula, there are no restri
tionson the subset J of S.Let (u; v) be the right Boolean expressions of (u; v) and 
onsider �R(u; v).First we need the following proposition.Proposition 3.1.1 Suppose that u; v � s1s2 � � � sn. Then67



68 Chapter 3. Paraboli
 R-polynomials and Kazhdan-Lusztig polynomialsRJ;qu;v(q) = (q � 1)l(u;v)�E(u;v)(q � 1� x)E(u;v)where E(u; v) = j 0 0� 1ldj:Proof. We pro
eed by indu
tion on n, the 
ase n = 1 being 
lear. If v �s1s2 � � � sn�1, then we 
on
lude by indu
tion.So assume that sn is the rightmost letter of v (equivalently assume that vn = 1l).Apply 3) of Theorem 0.5.11 to sn. If un = 1l, then RJ;qu;v(q) = RJ;qusn;vsn(q)and we 
on
lude by indu
tion. If un = 0, then s =2 DR(u). By Table 1.2,usn =2 S(n + 1)J if and only if n 2 J and un�1 = 0. In this 
ase RJ;qu;v(q) =(q � 1� x)RJ;qu;vsn(q): Otherwise, usn 2 S(n+ 1)J andRJ;qu;v(q) = (q � 1)RJ;qu;vsn(q) + qRJ;qusn;vsn(q):But usn 6� vsn be
ause sn � usn and sn 6� vsn. So RJ;qu;v(q) = (q � 1)RJ;qu;vsn(q)and the assertion follows by indu
tion. �Note that Proposition 3.1.1, whi
h is stated for the symmetri
 group, 
an beeasily generalized to any Coxeter group W .Now we want to asso
iate to (u; v) the pair of elements we obtain from theright Boolean expressions (u; v) of (u; v) by deleting all the letters on the right.Pre
isely, we de�ne a map � : f(x; y) 2 [e; (1; n+ 1)℄� [e; (1; n+ 1)℄ : x � yg !f(x; y) 2 [e; s1 � � � sn℄� [e; s1 � � � sn℄ : x � yg as follows. Given (x; y) in the range,we obtain �R(�(x; y)) from �R(x; y) by 
hanging all 2 to 1l and all 1r to 0 .In parti
ular, � does not depend on J .For example, if �R(x; y) = 0 0 0 0 0 0 1l 2 1r 1l2 2 2 2 2 1r 1l 2 2 1ld d� ��� ���dthen �R(�(x; y)) = 0 0 0 0 0 0 1l 1l 0 1l1l 1l 1l 1l 1l 0 1l 1l 1l 1ld d� ��� ���d :



3.1 Paraboli
 R-polynomials 69For m � 1, letAm(u; v) := jfi 2 J : [i+ 1; i+m� 1℄ � J;(vi; vi+1; :::; vi+m�1) = (2; 2; :::; 2);(ui�1; ui; :::; ui+m) = (1l; 0; :::; 0) andeither i+m =2 J or (vi+m; ui+m+1) = (1r; 6= 0)gj+jfi =2 J : [i+ 1; i+m� 1℄ � J;(vi; vi+1; :::; vi+m�1) = (2; 2; :::; 2);(ui; ui+1; :::; ui+m) = (0; 0; :::; 0) andeither i+m =2 J or (vi+m; ui+m+1) = (1r; 6= 0)gj:Equivalently,Am(u; v) = j1l 0 0 � � � 0 0� 2 2 � � � 2 �d d d� � � �j+ j1l 0 0 � � � 0 0 60� 2 2 � � � 2 1r �d d d� � � d j+j 0 0 0 � � � 0 02 2 2 � � � 2 �d d d� � �� �j+ j 0 0 0 � � � 0 0 602 2 2 � � � 2 1r �d d d� � �� d jwhere the 
olumns of type 02d are exa
tly m in the �rst two tableaux, m� 1 inthe other two.Furthermore letB(u; v) := j1l 0 0� 1r �d j+ j 0 061r �d j+ j 01r�j+ j 0 062 � j+ j1l �2 ��j+ j1l 22 �dj+ j1l 1r 062 � �d j;C(u; v) := j 0 0� 1ldj+ j1r 0� 1ldj+ j 0 0� 2dj+ j1r 0� 2dj+ j 0 1r� 2dj+ j1r1r� 2djand �nally Mu;v(q) := 1Ym=1 �(�x)m+1q � 1 + (q � 1� x)m�Am :



70 Chapter 3. Paraboli
 R-polynomials and Kazhdan-Lusztig polynomialsThen the polynomial RJ;xu;v(q) 
an be 
omputed through the following produ
tformula. For notational 
onvenien
e, here we drop the dependen
e on (u; v)so that l := l(u; v), l(�) := l(�(u; v)), Am := Am(u; v), B := B(u; v), andC := C(u; v).Theorem 3.1.2 The paraboli
 R-polynomial RJ;xu;v(q) is equal to(q � 1)B(q � 1� x)l�l(�)�PmAm�BMu;v(q)RJ;x�(u;v)(q); (3.1)where the polynomial RJ;x�(u;v)(q) 
an be 
omputed using the formula in Proposi-tion 3.1.1.Equivalently, RJ;xu;v(q) is equal to(q � 1)B+l(�)�C(q � 1� x)l�l(�)�PmAm�B+CMu;v(q): (3.2)Proof. Throughout this proof we use Tits' Word Theorem (Theorem 0.3.6) aswell as Lemma 1.1.2 without expli
it mention.Re
all that (u; v) are the right Boolean expressions of (u; v). First of all,the equivalen
e of 3.1 and 3.2 follows by Proposition 3.1.1. In fa
t RJ;x�(u;v)(q)has only fa
tors (q� 1� x) and (q � 1), and C(u; v) 
ounts the sub-tableaux of�R(u; v) that give rise to sub-tableaux of type 0 0� 1ld in �R(�(u; v)).Let us prove 3.1 by indu
tion on l(v). If v � s1s2 � � � sn, we are done be
ause�(u; v) = (u; v), B(u; v) = 0 and Am(u; v) = 0 for all m � 1.So we may assume that v 6� s1s2 � � � sn. Let si be the letter at the rightmostpla
e in v and use the re
ursive property of Theorem 0.5.11 applied to si. Caseby 
ase, we investigate the relationship between the polynomial RJ;xu;v(q) and thepolynomial RJ;xu0;v0(q), where u0 and v0 are the elements represented by u andv with the letters si at the rightmost pla
e (if any) deleted. So v0 = vsi andu0 = u or usi.Let us 
olle
t the 
ases that are analogous.If both v and u have a letter si at the rightmost pla
e, then RJ;xu;v(q) = RJ;xu0;v0(q),and we 
on
lude by indu
tion.Using Table 1.2, it is not hard to 
he
k that u � usi 2 W J and usi 6� vsipre
isely in the 
ases given in the following table, where empty spa
e stands forany entry.



3.1 Paraboli
 R-polynomials 71vi�1ui�1 viui vi+1ui+1 vi+2ui+2 i 2 J i+ 1 2 J1l 1r0 0 yes1r0 6= 0 yes1r0 no20 6= 021l no21l 2 yes21l 1r 6= 0 yesIn all these 
ases we have RJ;xu;v(q) = (q�1)RJ;xu0;v0(q), while B(u; v) = B(u0; v0)+1and Am(u; v) = Am(u0; v0) for all m � 1. Hen
e the result follows by indu
tion.Similarly, u � usi =2W J pre
isely in the 
ases given in the following tablevi�1ui�1 viui vi+1ui+1 vi+2ui+2 i 2 J i+ 1 2 J0 1r0 0 yes0 20 0 yes21l 1l no yes21l 1r 0 no yes1l 21l 1l yes yes1l 21l 1r 0 yes yes



72 Chapter 3. Paraboli
 R-polynomials and Kazhdan-Lusztig polynomialswhere RJ;xu;v(q) = (q � 1� x)RJ;xu0 ;v0(q), while B(u; v) = B(u0; v0) and Am(u; v) =Am(u0; v0) for all m � 1. So the result follows by indu
tion.By Table1.2, we have that u � usi 2 W J and usi � vsi exa
tly in thefollowing two 
ases.Case i) For somem � 1, (vi; vi+1; :::; vi+m�1) = (2; 2; :::; 2), (ui�1; ui; :::; ui+m) =(1l; 0; :::; 0), [i; i+m�1℄ � J and either i+m =2 J or, if i+m 2 J , (vi+m; ui+m+1) 6=(2; 0).First of all, let us treat the 
ase m = 1. By Theorem 0.5.11 we haveRJ;xu;v(q) = (q � 1)RJ;xu;vsi(q) + qRJ;xusi;vsi(q):As l(vsi) = l(v)� 1, we 
an use the indu
tion hypothesis and �ndRJ;xu;vsi(q) = 8>>>><>>>>: (q � 1)RJ;xusi;vsi(q); if i+ 1 =2 J ,(q � 1)RJ;xusi;vsi(q); if i+ 1 2 J and vi+1 = 1r, ui+2 6= 0,(q � 1� x)RJ;xusi ;vsi(q); if i+ 1 2 J and vi+1 2 f2; 1lg,(q � 1� x)RJ;xusi ;vsi(q); if i+ 1 2 J and (vi+1; ui+2) = (1r; 0),and hen
eRJ;xu;v(q) = 8>>>>><>>>>>: � q2�q+1q�1 �RJ;xu;vsi(q); if i+ 1 =2 J ,� q2�q+1q�1 �RJ;xu;vsi(q); if i+ 1 2 J and vi+1 = 1r, ui+2 6= 0,(q � 1� x)RJ;xu;vsi (q); if i+ 1 2 J and vi+1 2 f2; 1lg,(q � 1� x)RJ;xu;vsi (q); if i+ 1 2 J and (vi+1; ui+2) = (1r; 0),(note that (q � 1) + qq�1�x = (q � 1� x) for x 2 f�1; qg).Now, for all m � 1, we want to investigate the relationship between RJ;xu;v(q)and RJ;xu;vsi���si+m�1(q). A priori, RJ;xu;v(q)=RJ;xu;vsi���si+m�1(q) 
ould be fun
tion ofall the entries in �R(u; v) and we abuse notation by settingf(m) = RJ;xu;v(q)RJ;xu;vsi���si+m�1(q) :We 
laim that f(m) only depends on m, vi+m, ui+m+1 and on whether i+mis in J or not. We prove the 
laim by indu
tion on m. The 
laim is true for



3.1 Paraboli
 R-polynomials 73m = 1 sin
e we have just proved thatf(1) = 8>>>>><>>>>>: � q2�q+1q�1 � ; if i+ 1 =2 J ,� q2�q+1q�1 � ; if i+ 1 2 J and vi+1 = 1r, ui+2 6= 0,(q � 1� x); if i+ 1 2 J and vi+1 2 f2; 1lg,(q � 1� x); if i+ 1 2 J and (vi+1; ui+2) = (1r; 0). (3.3)If m > 1, by Theorem 0.5.11,RJ;xu;v(q) = (q � 1)RJ;xu;vsi(q) + qRJ;xusi;vsi(q);by the indu
tion hypothesis on 3.1RJ;xu;vsi(q) = (q � 1� x)m�1RJ;xu;vsi���si+m�1(q);and by the indu
tion hypothesis on the 
laim we 
an writeRJ;xusi;vsi(q) = f(m� 1)RJ;xusi;vsi���si+m�1(q):By indu
tion hypothesis on 3.1, RJ;xu;vsi���si+m�1(q) = (q�1�x)RJ;xusi;vsi���si+m�1(q),and hen
e f(m) satis�es the following re
ursive propertyf(m) = (q � 1)(q � 1� x)m�1 + qq � 1� xf(m� 1) (3.4)for any 
hoi
e of vi+m, ui+m+1 and J . This prove the 
laim.Now we 
an 
on
lude thatf(m) =8>>>><>>>>: (�x)m+1q�1 + (q � 1� x)m; if i+m =2 J ,(�x)m+1q�1 + (q � 1� x)m; if i+m 2 J and vi+m = 1r, ui+m+1 6= 0,(q � 1� x)m; if i+m 2 J and vi+m 2 f2; 1lg,(q � 1� x)m; if i+m 2 J and (vi+m; ui+m+1) = (1r; 0).In fa
t, for x 2 f�1; xg, this fun
tion veri�es both the re
ursive property of 3.4and the initial 
onditions of 3.3.Hen
e the result follows by indu
tion.Case ii) For somem � 1, (vi; vi+1; :::; vi+m�1) = (2; 2; :::; 2), (ui; ui+1; :::; ui+m) =(0; 0; :::; 0), i =2 J , [i+ 1; i+m� 1℄ � J and either i+m =2 J or, if i+m 2 J ,



74 Chapter 3. Paraboli
 R-polynomials and Kazhdan-Lusztig polynomials(vi+m; ui+m+1) 6= (2; 0).As in Case i), we 
an show by indu
tion that RJ;xu;v(q)=RJ;xu;vsi���si+m�1(q) onlydepends on m, vi+m, ui+m+1 and on whether i +m is in J or not. We abusenotation by setting g(m) = RJ;xu;v(q)RJ;xu;vsi���si+m�1(q) :By Theorem 0.5.11 and the indu
tion hypothesis on 3.1, we haveRJ;xu;v(q) = (q � 1)RJ;xu;vsi(q) + qRJ;xusi;vsi(q)= (q � 1)(q � 1� x)m�1RJ;xu;vsi���si+m�1(q)+ qf(m� 1)RJ;xusi;vsi���si+m�1(q)where f(m) is as above. Now, by indu
tion hypothesis on 3.1,RJ;xu;vsi���si+m�1(q) = (q � 1� x)RJ;xusi;vsi���si+m�1(q)and hen
e we haveg(m) = (q � 1)(q � 1� x)m�1 + qq � 1� xf(m� 1): (3.5)for any 
hoi
e of vi+m, ui+m+1 and J .We 
laim that g(m) = f(m) for all m. By 3.4 and 3.5 it su�
es to prove thatg(1) = f(1).So assume m = 1. By Theorem 0.5.11, we haveRJ;xu;v(q) = (q � 1)RJ;xu;vsi(q) + qRJ;xusi;vsi(q)and by indu
tion we haveRJ;xu;vsi(q) = 8>>>><>>>>: (q � 1)RJ;xusi;vsi(q); if i+ 1 =2 J ,(q � 1)RJ;xusi;vsi(q); if i+ 1 2 J and vi+1 = 1r, ui+2 6= 0,(q � 1� x)RJ;xusi ;vsi(q); if i+ 1 2 J and vi+1 2 f2; 1lg,(q � 1� x)RJ;xusi ;vsi(q); if i+ 1 2 J and (vi+1; ui+2) = (1r; 0),obtaining the same values of Case i). So g(1) = f(1) and g(m) = f(m) for allm � 1.This 
on
ludes the indu
tion step and hen
e the proof. �



3.1 Paraboli
 R-polynomials 75Example 7 Let us 
ompute the R-polynomial RJ;xu;v(q) of S12, where the Booleanpermutations v and u, and the subset J of S are as follows:v = s1s2s3s4s5s6s8s9s11s10s9s8s7s6s4s3s2u = s1s6s11s7J = f2; 3; 4; 9; 10gBy Table 1.2, the permutations u and v are in SJ12. As the given expressionsare right Boolean, we have�R(u; v) = 1l 0 0 0 0 1l 1r 0 0 0 1l1l 2 2 2 1l 2 1r 2 2 1r 1ld d d d d� ���� �and �R(�(u; v)) = 1l 0 0 0 0 1l 0 0 0 0 1l1l 1l 1l 1l 1l 1l 0 1l 1l 0 1ld d d d d� ���� � :Now l(u; v) = 13, l(�(u; v)) = 6 andA2(u; v) = jf8gj = 1;A3(u; v) = jf2gj = 1;Am(u; v) = 0 for all m =2 f2; 3g:Hen
e Mu;v(q) = � (�x)3q � 1 + (q � 1� x)2�� (�x)4q � 1 + (q � 1� x)3� :Furthermore B(u; v) = 2with the 
ontributions exa
tly given byj 0 061r �d j = 1; j1l �2 ��j = 1:



76 Chapter 3. Paraboli
 R-polynomials and Kazhdan-Lusztig polynomialsIf we want to use 3.1, we have to 
ompute RJ;x�(u;v)(q). By Proposition 3.1.1,RJ;x�(u;v)(q) = (q � 1)3(q � 1� x)3;sin
e E(�(u; v)) = 3.If we want to use 3.2, we have to 
ompute C(u; v) and we obtainC(u; v) = 3with the 
ontributions exa
tly given byj 0 0� 2dj = 3:Note that E(�(u; v)) = C(u; v). This is not by 
han
e.Using one of the two equivalent formulae 3.1 and 3.2 we obtainRJ;xu;v(q) = (q � 1)5(q � 1� x)3 � (�x)3q � 1 + (q � 1� x)2� �(�x)4q � 1 + (q � 1� x)3� ;that isRJ;xu;v(q) = ( q3(q � 1)3(q3 � q2 + 1)(q4 � q3 + 1); if x = �1.(q � 1)3(q3 � q + 1)(q4 � q + 1); if x = q.Remarks.- Theorem 3.1.2, as stated, fails for the left Boolean expressions.- The result in Theorem 3.1.2 for J = ; (ordinary R-polynomials) impliesTheorem 2.1.1.3.2 Paraboli
 Kazhdan-Lusztig polynomialsLet u; v 2 S(n + 1)J , u � v, be two Boolean permutations. In this se
tion wegive a 
losed 
ombinatorial formula for the paraboli
 Kazhdan-Lusztig polyno-mials of type q indexed by u and v. In this formula, there are no restri
tions onthe subset J of S.



3.2 Paraboli
 Kazhdan-Lusztig polynomials 77Let (u; v) be the left Boolean expressions of (u; v) and 
onsider �L(u; v). Westart with the following proposition.Proposition 3.2.1 Suppose that u; v � s1s2 � � � sn. ThenP J;qu;v (q) = ( 0; if E(u; v) > 0,1; otherwise.where E(u; v) = j 0 0� 1ldj as in Proposition 3.1.1.Proof. We pro
eed by indu
tion on n, the 
ase n = 1 being 
lear. If v �s1s2 � � � sn�1, then we 
on
lude by indu
tion. So we may assume that sn is therightmost letter of v, or, equivalently, we may assume that vn = 1l. Let us applyTheorem 0.5.14 to sn. As sn 6� vsn, 
learly fw � vsn : wsn < wg = ;, andhen
e the sum on the right hand side of the re
ursive formula of Theorem 0.5.14is always empty.If un = 1l, then 
learly usn < u, and u 6� vsn sin
e sn � u but sn 6� vsn. Itfollows that ~P = P J;qusn;vsn(q). So we 
an 
on
lude by indu
tion.Suppose that un = 0. In this 
ase u < usn 6� vsn sin
e sn � usn but sn 6� vsn.If un�1 = 0 and n 2 J , then, by Table 1.2, usn =2 W J and hen
e ~P = 0 asdesired. Otherwise, usn 2 W J and ~P = P J;qu;vsn(q). So the assertion follows byindu
tion. �Note that Proposition 3.2.1 
an be generalized to any Coxeter group W .To simplify notation, we de�ne a map 
 : f(x; y) 2 [e; (1; n+1)℄� [e; (1; n+1)℄ : x � yg ! f(x; y) 2 [e; s1 � � � sn℄ � [e; s1 � � � sn℄ : x � yg as follows. Given(x; y) in the range, we obtain �L(
(x; y)) from �L(x; y) by the following steps:1. 
hange the leftmost sub-tableau of type 0 02 2� d to a sub-tableau of type 1l 01l 2d�(where � 
an be either d or �);2. if there are still sub-tableaux of type 0 02 2� d, go to step (1). Otherwise,
hange all 2 to 1l and all 1r to 0 .



78 Chapter 3. Paraboli
 R-polynomials and Kazhdan-Lusztig polynomialsFor example, suppose that�L(x; y) = 0 0 0 0 0 0 1l 2 1r 1l2 2 2 2 2 1r 1l 2 2 1ld d� ��� ���d :After the following intermediate steps0 0 0 0 0 0 1l 2 1r 1l2 2 2 2 2 1r 1l 2 2 1ld d� ��� ���d#1l 0 0 0 0 0 1l 2 1r 1l1l 2 2 2 2 1r 1l 2 2 1ld d� ��� ���d#1l 1l 0 0 0 0 1l 2 1r 1l1l 1l 2 2 2 1r 1l 2 2 1ld d� ��� ���d#1l 1l 0 1l 0 0 1l 2 1r 1l1l 1l 2 1l 2 1r 1l 2 2 1ld d� ��� ���d#1l 1l 0 1l 0 0 1l 1l 0 1l1l 1l 1l 1l 1l 0 1l 1l 1l 1ld d� ��� ���d ;we obtain �L(
(x; y)) = 1l 1l 0 1l 0 0 1l 1l 0 1l1l 1l 1l 1l 1l 0 1l 1l 1l 1ld d d� � �����and so 
(x; y) = (s1s2s4s7s8s10; s1s2s3s4s5s7s8s9s10).



3.2 Paraboli
 Kazhdan-Lusztig polynomials 79Furthermore, we let a(u; v) = j � 02 2dj; b(u; v) = j � 02 2�j;and
(u; v) = j1l 1l2 �dj+ j 0 0 0� 1r �d j+ j 0 0 0� 2 �d j+ j 0 062 2dj+ j 0 0� 1ldj+ j 0 1r� 2dj+ j1r1r� 2dj:We drop the (u; v) when no 
onfusion arises.Then the polynomial P J;qu;v (q) 
an be 
omputed through the following produ
tformula.Theorem 3.2.2 The paraboli
 Kazhdan-Lusztig polynomial P J;qu;v (q) satis�esP J;qu;v (q) = 8><>: 0; if j1l 1l2 �dj+ j 0 0 0� 1r �d j+ j 0 0 0� 2 �d j > 0qa(1 + q)bP J;q
(u;v)(q); otherwise, (3.6)where the polynomial P J;q
(u;v)(q) 
an be 
omputed as in Proposition 3.2.1.Equivalently, P J;qu;v (q) = ( 0; if 
 > 0;qa(1 + q)b; otherwise. (3.7)Proof. In this proof we use both Tits' Word Theorem (Theorem 0.3.6) andLemma 1.1.2 without expli
it mention.Re
all that (u; v) are the left Boolean expressions of (u; v). It is 
lear that 3.7is equivalent to 3.6 sin
e 
(u; v) is the number of the sub-tableaux nullifyingP J;xu;v (q) in 3.6 or nullifying P J;x
(u;v)(q) by Proposition 3.2.1.Let us prove 3.6 by indu
tion on l(v). If v � s1s2 � � � sn, we are done be
ause
(u; v) = (u; v), a(u; v) = 0 and b(u; v) = 0. So assume v 6� s1s2 � � � sn. Let si bethe letter at the rightmost pla
e in v. The re
ursive property of Theorem 0.5.14applied to si givesP J;qu;v (q) = ~P � Xw2[u;vsi℄J : si2DR(w)�(w; vsi)q l(v)�l(w)2 P J;qu;w(q): (3.8)Let us pro
eed 
ase by 
ase.



80 Chapter 3. Paraboli
 R-polynomials and Kazhdan-Lusztig polynomialsSuppose �rst that �L(u; v) 
ontains one of the following two tableaux:: : :1l h 0 : : : 0 0 g� 2 2 2 f �d
: : :h 0 : : : 0 0 g2 2 2 f ��

where, in both 
ases, h 2 f1l; 0g, (f; g) 6= (2; 0), the 
olumn h2 is the i-th, andthe 
olumn 0f is the (i+m)-th. First of all, by Corollary 0.5.15, we 
an assumeh = 0 as si 2 DR(v) and u(si+1) = 0. We 
laim that, if m > 1, thenP J;qu;v (q) = qjAj(1 + q)m�2�jAjP J;qu0;v0(q)where A = fk 2 [i; i +m � 2℄ : k + 1 2 Jg, v0 = vsisi+1 � � � si+m�2 and u0 isrepresented by the expression we obtain by inserting sk to the left in u for allk 2 A. Let us prove the 
laim. For 
onvenien
e, we denote by vsi the expressionwe obtain from v by deleting the letter si at the rightmost pla
e. The sum in(3.8) gives no 
ontribution. In fa
t, let w be a redu
ed expression of an elementw 2 fw � vsi : wsi < wg whi
h is a subword of vsi. Then w has a fa
tor si onthe left and no fa
tors si+1. Hen
e si+1 2 DR(vsi) nDR(w) and �(w; vsi) = 0by Corollary 0.5.15. Let us 
ompute the polynomial ~P . We have~P = qP J;qusi;vsi(q) + P J;qu;vsi (q) = ( qP J;qusi;vsi(q); if i+ 1 2 J ,(q + 1)P J;qu;vsi(q); if i+ 1 =2 J .In fa
t, if i+1 2 J , then si+1 2 DR(vsi) and u < usi+1 =2 W J . So, in this 
ase,P J;qu;vsi(q) = 0. If i+ 1 =2 J , by the indu
tion hypothesis P J;qusi;vsi(q) = P J;qu;vsi(q).The 
laim follows by iterating this pro
edure.It remains to 
onsider the 
ase m = 1. Let w be a redu
ed expression ofan element w 2 fw � vsi : wsi < wg whi
h is a subword of vsi. Then whas a fa
tor si on the left and no fa
tors si+1. In parti
ular, w(si) = 1 andw(si+1) = 0. Hen
e, by Corollary 2.4.1, we have that �(w; vsi) 
an be non-zeroonly if l(w; vsi) = 1 (f 
annot be 0 otherwise v would not be redu
ed). Let usdistinguish the three 
ases: f = 2, f = 1r, f = 1l.If f = 2, the sum gives no 
ontribution be
ause l(w; vsi) > 1 for all possible w.



3.2 Paraboli
 Kazhdan-Lusztig polynomials 81By indu
tion hypothesis,P J;qu;vsi (q) = ( 0; if i+ 1 2 J ,P J;qusi;vsi(q); if i+ 1 =2 J .and then ~P = ( qP J;qusi;vsi(q); if i+ 1 2 J ,(q + 1)P J;qu;vsi(q); if i+ 1 =2 J ,as in the 
ase m > 1.If f = 1r we have �(w; vsi) = ( 1; if w = vsisi+1,0; otherwise,and the sum 
ontribute exa
tly with one summand. Hen
eP J;qu;v (q) = qP J;qusi;vsi(q) + P J;qu;vsi(q)� qP J;qu;vsisi+1(q):By indu
tion P J;qusi;vsi(q) = P J;qu;vsisi+1(q), thusP J;qu;v (q) = P J;qu;vsi(q):If f = 1l, we get that �(w; vsi) 
an be non-zero only if w is the element rep-resented by the expression we obtain from vsi by deleting the fa
tor si+1. Wehave to see if this element w is in W J or not. By Table 1.2, w is not in W J ifand only if i+ 2 2 J and wi+2 2 f2; 1lg. But wi+2 = vi+2. SoP J;qu;v (q) = ( qP J;qusi;vsi(q) + P J;qu;vsi(q); if i+ 2 2 J and vi+2 = f2; 1lgqP J;qusi;vsi(q) + P J;qu;vsi(q)� qP J;qu;w(q); otherwise.By indu
tion hypothesis, P J;qusi;vsi(q) = P J;qu;vsi(q) = P J;qu;w(q). Hen
eP J;qu;v (q) = ( (q + 1)P J;qu;vsi (q); if i+ 2 2 J and vi+2 2 f2; ; 1lgP J;qu;vsi(q); otherwise.We 
laim that P J;qu;v (q) = P J;qu;vsi(q) in any 
ase, sin
e, if i + 2 2 J and vi+2 2f2; 1lg, then P J;qu;vsi (q) = 0. In fa
t, the restri
tions on vi+2 imply g 2 f2; 1l; 0g,and i + 2 2 J for
es g = 0 sin
e u 2 W J . Hen
e by indu
tion hypothesis,



82 Chapter 3. Paraboli
 R-polynomials and Kazhdan-Lusztig polynomialsP J;qu;vsi(q) = 0 sin
e 
olumns i-th and (i + 1)-th of �L(u; vsi) form either atableau of type 0 026 2d or a tableau of type 0 026 1ld.So the assertion follows by indu
tion.Now suppose that �L(u; v) 
ontains one of the following tableaux:1l 1l2 �d0 0 0� 1r �d0 0 0� 2 �dwhere the last 
olumn is the (i + 1)-th. Clearly si 2 DR(v) n DR(u). Butusi =2W J , and then P J;qu;v (q) = 0.Finally, in all the remaining 
ases, we haveP J;qu;v (q) = P J;qu0;v0(q);where v0 = vsi and u0 is the element represented by the expression we obtainfrom u by deleting the letter si at the rightmostpla
e, if any. The proof of thisfa
t uses the same te
hnique as above, but is mu
h simpler, and it is left to thereader.This 
on
ludes the indu
tion step and we are done. �Example 8 Let us 
ompute the Kazhdan-Lusztig polynomial P J;xu;v (q) of S10,where the Boolean permutations v and u, and the subset J of S are as follows:v = s1s2s3s4s5s7s8s9s8s7s6s5s4s2s1u = s1s4s9s6J = f2; 8g:By Table 1.2, the permutations u and v are in SJ10. As the given expressions



3.2 Paraboli
 Kazhdan-Lusztig polynomials 83are left Boolean, we have�L(u; v) = 1l 0 0 1l 0 1r 0 0 1l2 2 1l 2 2 1r 2 2 1ld���� d� � � :Therefore a(u; v) = 2;b(u; v) = 1;
(u; v) = 0;and using 3.7 we obtain P J;qu;v (q) = q2(1 + q):Remarks.- Theorem 3.2.2, as stated, fails for the right Boolean expressions.- The result in Theorem 3.2.2 for J = ; (ordinary Kazhdan-Lusztig poly-nomials) implies Theorem 2.2.1.We expli
itly state the following easy 
onsequen
e of Theorem 3.2.2. Thisproves, in the 
ase of Boolean permutations, a 
onje
ture of Brenti ([18℄).Corollary 3.2.3 Let I � J . ThenP J;qu;v (q) � P I;qu;v (q)in the 
oe�
ient-wise 
omparison.Proof. Straightforward by the analisys of (3.6). �
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Chapter 4Proof of Lusztig 
onje
tureThis Chapter is devoted to the proof of Lusztig's 
onje
ture on the 
ombina-torial invarian
e of Kazhdan-Lusztig polynomials for lower Bruhat intervals inany Coxeter group. This follows by proving that spe
ial mat
hings lead to aposet theoreti
 re
ursion for 
omputing R-polynomials (Corollary 4.4.8). Corol-lary 4.4.8 is reformulated in a very 
ompa
t way in Se
tion 5 (Theorem 4.5.2) byintrodu
ing a 
ombinatorial version of the He
ke algebra (naturally asso
iatedto the spe
ial mat
hings) whi
h a
ts on the 
lassi
al He
ke algebra.4.1 Combinatorial properties of Bruhat intervalsIn this se
tion we prove some 
ombinatorial properties of Bruhat order on aCoxeter group whi
h are needed in the sequel.The next result 
an be proved in a way exa
tly analogous to Lemma 3.1 of[32℄, and its proof is therefore omitted. We refer the reader to [39℄ for a detailedtreatment of roots systems.Lemma 4.1.1 Let (W;S) be a Coxeter system and t1; : : : ; t2n 2 T (n 2 P).- If t1t2 = t3t4 6= e then the 
orresponding positive roots �t1 , �t2 , �t3 , �t14 are
oplanar.- If t1; t2; : : : ; tn are su
h that the 
orresponding positive roots �t1 ; �t2 ; : : : �tnare 
oplanar then the re�e
tion subgroup ht1; t2; : : : ; tni is a dihedral re-�e
tion subgroup. 87



88 Chapter 4. Proof of Lusztig 
onje
tureTheorem 4.1.2 Let (W;S) be a Coxeter system and a; b 2 W be su
h thateither jfw 2W : w C a; w C bgj � 3; (4.1)or jfw 2W : w B a; w B bgj � 3: (4.2)Then a = b.Proof. We prove the assertion for (4:1), the proof for (4:2) being entirelysimilar.Suppose that a 6= b and let x; y; z 2 fw 2 W : wCa; wCbg. Let t1; : : : ; t6 2 Tbe su
h that at1 = x, at3 = y, at5 = z, bt2 = x, bt4 = y, bt6 = z. Then at1t2 =at3t4 = at5t6 = b so t1t2 = t3t4 = t5t6 6= e. This, by Lemma 4.1.1, implies thatW 0 := ht1; : : : ; t6i is a dihedral re�e
tion subgroup. Clearly, a; b; x; y; z 2 aW 0.But, by Lemma 1.4 of [32℄, aW 0 with the partial order indu
ed by the Bruhatordering of W is poset-isomorphi
 to W 0 (
onsidered as an abstra
t Coxetersystem). This is a 
ontradi
tion sin
e W 0 is a dihedral Coxeter system, andx; y; z are in
omparable. Hen
e a = b, as desired. �Note that Theorem 4.1.2 immediately implies Proposition 3.1 of [17℄. Thefollowing result, though already known, turns out to be a dire
t 
onsequen
e ofTheorem 4.1.2. We 
all an interval [u; v℄ in a poset P dihedral if it is isomorphi
to a �nite dihedral group ordered by Bruhat order.Corollary 4.1.3 Let (W;S) be a Coxeter system, and u, v 2 W . Suppose thatjfz 2 [u; v℄ : l(z) = l(v)� 1gj = 2. Then [u; v℄ is a dihedral interval.Proof. It is well known that, for all x; y 2W su
h that y � x and l(x)�l(y) = 2,[y; x℄ is a Boolean algebra of rank 2. Using this and Theorem 4.1.2, it is easyto prove, by indu
tion on i, that jfw 2 [u; v℄ : l(w) = l(v) � igj = 2, for alli 2 [l(v)� l(u)� 1℄, as desired. �4.2 Pairs of spe
ial mat
hingsThe following result follows dire
tly from [17, Lemma 4.1℄.



4.2 Pairs of spe
ial mat
hings 89PSfrag repla
ements xM(x) N(x)NM(x) MN(x)MNM(x) NMN(x)Figure 4.1: The orbits hM;Ni(u) are dihedral intervalsLemma 4.2.1 Let P be a graded poset, M be a spe
ial mat
hing of P , andu; v 2 P be su
h that M(v) C v and M(u) B u. Then M restri
ts to a spe
ialmat
hing of [u; v℄.Sin
e a mat
hing is an appli
ation from the set of verti
es of a graph to itself,we 
an 
ompose spe
ial mat
hings as fun
tions. Given two spe
ial mat
hings,M and N , we wish to look at the stru
ture of the orbits of hM;Ni, the groupgenerated byM and N . For x 2 P we denote by hM;Ni(x) the orbit of x underthe a
tion of hM;Ni.Lemma 4.2.2 Let P be a �nite graded poset, and M and N be two spe
ialmat
hings of P . Then the orbit hM;Ni(u) of any u 2 P is a dihedral interval.Proof. Sin
e P is �nite, the orbit hM;Ni(u) is also �nite. Therefore thereexists x 2 hM;Ni(u) su
h that M(x) C x and N(x) C x. If M(x) = N(x)then hM;Ni(u) = fx;M(x)g and we are done. Else, by the de�nition of a spe-
ial mat
hing we have that N(M(x)) CM(x), N(M(x)) C N(x), M(N(x)) CN(x), and M(N(x)) C M(x). If M(N(x)) = N(M(x)) then hM;Ni(u) =fx;N(x);M(x); N(M(x))g and we are done. Otherwise we 
on
lude, simi-larly, that MNM(x)CNM(x), MNM(x)CMN(x), NMN(x)CMN(x), andNMN(x)CNM(x) (see Figure 4.1).If MNM(x) = NMN(x) then we are done, else we 
ontinue in this way.Sin
e hM;Ni(u) is �nite there exists l 2 P su
h thatMNM : : :| {z }l (x) = NMN : : :| {z }l (x)and the result follows. �The following is the main result of this se
tion, and one of the key ingredientsin the proof of our main result. We say that a graded poset P avoids K3;2 ifthere are no elements a1; a2; a3; b1; b2 2 P , all distin
t, su
h that either ai C bj



90 Chapter 4. Proof of Lusztig 
onje
turefor all i 2 [3℄, j 2 [2℄ or aiB bj for all i 2 [3℄, j 2 [2℄. So, for example, a Coxetergroup under Bruhat order avoids K3;2 by Theorem 4.1.2.Proposition 4.2.3 Let P be a graded poset that avoids K3;2, v 2 P , andM andN be two spe
ial mat
hings of P su
h thatM(v) 6= N(v). Let v0 =2 fM(v); N(v)gand suppose that eitheri) M(v)C v, N(v)C v and v0 C v, orii) M(v)B v, N(v)B v and v0 B v.Then jhM;Ni(v)j = jhM;Ni(v0)j:Proof. We prove the statement only in 
ase i), 
ase ii) following by 
onsideringthe dual poset P �. Suppose that jhM;Ni(v)j = 2n, jhM;Ni(v0)j = 2m. Notethat, sin
e v0 62 fM(v); N(v)g, hM;Ni(v) \ hM;Ni(v0) = ;. Therefore, noelement of hM;Ni(v) is mat
hed by eitherM or N to an element of hM;Ni(v0).This, by the de�nition of a spe
ial mat
hing, and a simple indu
tion on k,implies thatMNM � � �| {z }k (v0)CMNM � � �| {z }k (v) ; MNM � � �| {z }k (v0)CNMN � � �| {z }k�1 (v0);and similarly thatNMN � � �| {z }k (v0)CNMN � � �| {z }k (v) ; NMN � � �| {z }k (v0)CMNM � � �| {z }k�1 (v0);for all k 2 [n℄. Therefore, m � n. If m > n, then MNM � � �| {z }n (v) = NMN � � �| {z }n (v),whileMNM � � �| {z }n (v0) 6= NMN � � �| {z }n (v0), and this 
ontradi
ts the fa
t that P avoidsK3;2 (see Figure 4.2). �We now restri
t our attention to the 
ase where P is a lower Bruhat intervalof a Coxeter group W , i.e. an interval of the form [e; v℄, with v 2 W . In this
ase we often refer to a spe
ial mat
hing of [e; v℄ as a spe
ial mat
hing of v.Lemma 4.2.4 Let u; v 2 W , u � v and M and N be two spe
ial mat
hings ofv. Suppose that jhM;Ni(u)j > 2. Then there exists a unique maximal dihedralinterval I 
ontaining hM;Ni(u). Furthermore I is a union of orbits of hM;Ni.
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PSfrag repla
ements vM(v) N(v)NM(v) MN(v)NMN(v) = MNM(v)
v0M(v0) N(v0)NM(v0) MN(v0)NMN(v0)MNM(v0)Figure 4.2: The 
ase n = 3 and m > nProof. The result follows easily by Theorem 4.1.2, Lemma 4.2.2 and the de�-nition of a spe
ial mat
hing. �Lemma 4.2.5 Let u; v 2 W , u � v and M and N be two spe
ial mat
hings ofv. If jhM;Ni(u)j = 2m > 2, then there exists u0 and a dihedral interval I su
hthat e;M(e); N(e) 2 I, jhM;Ni(u0)j = 2m and hM;Ni(u0) � I. In parti
ular,if M(e) 6= N(e), then WfM(e);N(e)g 
ontains an orbit of 
ardinality 2m.Proof. Without loss of generality we may assume that M(u); N(u) C u. We
laim that we 
an �nd a sequen
e u = u1Bu2B� � �Buk su
h thatM(ui); N(ui)Cui, jhM;Ni(ui)j = 2m for all i 2 [k℄, and [e; uk℄ is a dihedral interval. In fa
t iffz 2 [e; u℄ : z C ug = fM(u); N(u)g then we are done. Otherwise let u2 2 fz 2[e; u℄ : z C ug n fM(u); N(u)g. Then, by Proposition 4.2.3, jhM;Ni(u2)j = 2mand M(u2) C u2, N(u2) C u2. If fz 2 [e; u2℄ : z C u2g = fM(u2); N(u2)g thenour 
laim is proved. Otherwise let u3 2 fz 2 [e; u2℄ : z C u2g n fM(u2); N(u2)gand 
ontinue as above. This proves our 
laim. Let I be the maximal dihedralinterval 
ontaining hM;Ni(uk). Sin
e [e; uk℄ is dihedral we have hM;Ni(uk) �[e; uk℄ � I and by Lemma 4.2.4 I is union of orbits of hM;Ni. In parti
ularM(e); N(e) 2 I and the proof is 
omplete. �



92 Chapter 4. Proof of Lusztig 
onje
ture4.3 Groups of rank 3If J � S and w 2 W we let WJ (w) :=WJ \ [e; w℄.For x; y 2 S we denote by � � �xyx (respe
tively xyx � � �) a word given byalternating x and y that ends (respe
tively begins) with x. Inside any singleproof, if the length of su
h a word is not spe
i�ed, it is assumed to be arbitrarybut �xed.A 
omplete mat
hing of an interval [e; w℄ is 
alled a multipli
ation mat
hingif there exists s 2 S su
h that either M = �s or M = �s.The expressions 
onsidered for an element of a Coxeter group are alwaysassumed to be redu
ed.Lemma 4.3.1 Let u;w 2 W , u � w andM be a spe
ial mat
hing of w. Supposethat u does not belong to any dihedral interval 
ontaining e and M(e), and thatM(u) B u. Then there exist two distin
t elements u1 and u2 su
h that ui C uand M(ui)B ui, for i = 1; 2.Proof. By Lemma 4.2.1, given an element v with v BM(v), M restri
ts to aspe
ial mat
hing of [e; v℄. In parti
ular M(e) � v. Hen
e, if M(e) 6� u, thenM(x)B x for all x 2 [e; u℄, and the assertion is proved.So we may assume that M(e) � u. Hen
e the interval [e; u℄ is not dihedral and,in parti
ular, [e;M(u)℄ has at least two 
oatoms distin
t from u, say x1 andx2. Then the elements ui = M(xi), for i = 1; 2, satisfy the 
onditions of thestatement. �Lemma 4.3.2 Let u;w 2 W , u � w andM be a spe
ial mat
hing of w. Supposethat for all x � u su
h that x belongs to a dihedral interval 
ontaining e andM(e) we have M(x) = xM(e). Then M(u) = uM(e).Proof. We pro
eed by indu
tion on l(u) the statement being trivial if l(u) =0. We may assume M(u) B u, otherwise the statement follows by indu
tion.Furthermore, we may 
learly assume that u does not belong to a dihedral interval
ontaining e andM(e). Hen
e, by Lemma 4.3.1, there exist two distin
t elementsu1 and u2 su
h that ui C u and M(ui) B ui, for i = 1; 2. By our indu
tionhypothesisM(ui) = uiM(e), for i = 1; 2. Therefore uM(e) 
overs u;M(u1) andM(u2) and, by the de�nition of a spe
ial mat
hing, M(u) also 
overs u;M(u1)and M(u2). Hen
e M(u) = uM(e) by Theorem 4.1.2. �Proposition 4.3.3 Let w 2 W and M be a spe
ial mat
hing of w. Then forall J � S su
h that M(e) 2 J , M stabilizes WJ (w).
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PSfrag repla
ements

e rstts st sr rs
tst str M(sr)

Figure 4.3: Proof of Lemma 4.3.4.Proof. We prove that u 2 WJ(w) implies M(u) 2 WJ (w) by indu
tion onl(u), this being trivial if l(u) = 0. We may 
learly assume that M(u)B u. LetxCM(u), x 6= u. Then M(x)C u and by our indu
tion hypothesis x 2 WJ (w).Hen
e all the 
oatoms of M(u) are in WJ (w), so M(u) 2 WJ (w). �From now on we assume that (W;S) is a Coxeter system of rank 3. Welet S := fs; r; tg, w 2 W , M be a spe
ial mat
hing of w and we assume thatM(e) = s.Lemma 4.3.4 If rs; sr; ts; st � w, rs 6= sr, st 6= ts, M(t) = ts and M(r) = rs,then M(st) = sts and M(sr) = srs.Proof. By symmetry it su�
es to show that M(st) = sts.By de�nition of a spe
ial mat
hing M(st) B st and M(st) B ts, so M(st) 2fsts; tstg. Similarly, M(sr) 2 fsrs; rsrg. Suppose M(st) = tst. If str � wthen (see Figure 4.3) M(str) B tst;M(sr). But there are no elements 
overingboth tst and M(sr), so str � w. Similarly srt � w. Now 
onsider a redu
edexpression for w. Then tst and either srs or rsr are both subexpressions of itand it is easy to see that these 
onditions for
e that either str or srt is also asubexpression, 
ontradi
ting the fa
t that str � w and srt � w. �
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onje
tureLemma 4.3.5 Suppose rs; sr; ts; st � w, M(t) = ts and M(r) = rs, but M 6=�s. Let x0 be a minimal element su
h that M(x0) 6= x0s. By Lemma 4.3.2, wene
essarily have x0 2Wfs;tg(w)[Wfs;rg(w) and we assume that x0 2 Wfs;tg(w).Let u be su
h that x0 C u � w and u =2 Wfs;tg(w). Then u 2 fx0r; rx0g.Furthermore, if sr 6= rs, then u = rx0.Proof. Clearly, s =2 DR(x0), andM(x0)Bx0. Let x0 = ��� � � � tst| {z }k where � = sif k is even, � = t if k is odd and f�; �g = fs; tg. Sin
e x0 6= t we 
on
lude thatst 6= ts. Hen
e, by Lemma 4.3.4, M(sr) = srs. Let u be as in the statementand assume u =2 fx0r; rx0g if sr = rs and u 6= rx0 if sr 6= rs. So u is obtainedby inserting a letter r in the unique redu
ed expression of x0.Let y := �u. Then y C u, hen
e the elements in Wfs;tg(y) are all stri
tlysmaller than x0. Furthermore, the elements in Wfs;rg(y) are smaller than, orequal to, srs. Hen
e, by Lemma 4.3.2, M(y) = ys. Sin
e x0 and y are both
overed by u, M(u) BM(x0) = ��� � � � tst| {z }k+1 6= ��� � � � sts| {z }k+1 and M(u) BM(y).Then it is not di�
ult to see that these two 
onditions for
e M(u) = yst whi
his a 
ontradi
tion sin
e, as one 
an verify, yst 6> u. �Lemma 4.3.6 Suppose that M(t) = ts 6= st and M(r) = sr 6= rs. Thenrst � w. Furthermore, if rt 6= tr, then rt � w.Proof. Suppose rt � w. Then, by the de�nition of spe
ial mat
hing,M(rt)Brt,M(rt)Bts andM(rt)Bsr (see Figure 4.4). If rt 6= tr there are no su
h elementsand this proves the se
ond part of the statement. If rt = tr then ne
essarilyM(rt) = tsr. If rst � w then M(rst) would 
over both tsr and rst and thereare 
learly no su
h elements. �In the following results we distinguish three 
ases:1. M(t) = ts, M(r) = rs 6= rs and M 6� �s. We let x0 be a minimalelement su
h that M(x0) 6= x0s, we assume that x0 2 Wfs;tg(w) and welet ��� � � � tst be its unique redu
ed expression.2. M(t) = ts, M(r) = rs = sr and M 6� �s. We let x0 be the minimal ele-ment su
h that M(x0) 6= x0s and we let ��� � � � tst be its unique redu
edexpression.3. M(t) = ts 6= st and M(r) = sr 6= rs.
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Figure 4.4: Proof of Lemma 4.3.6.The following Proposition shows that if an interval [e; w℄ has a spe
ial mat
hingwhi
h is not a multipli
ation mat
hing, then w must be of a spe
ial form.Proposition 4.3.7 In 
ase (1) any element u � w has a redu
ed expressionu = � � � r�r���� � � �, where � 2 fe; �g;In 
ase (2) any element u � w has a redu
ed expression of the form u =� � � r�r�(��� � � �)Æ, where � 2 fe; �gand Æ 2 fe; rg;In 
ase (3) any element u � w has a redu
ed expression u = � � � tst"rsr � � �,where " 2 fe; sg.Proof. It is 
lear that in all 
ases it is enough to prove the statement for u = w,the general result following by the subword property.(1) Let ��� � � � tst be a longest subword of a redu
ed expression of w givenby alternating s and t, starting with � and ending with t with the �rst � 
hosenas left as possible. Consider the �rst letter r that appears after the �rst � ofthis subword. By Lemma 4.3.5, this letter r 
an be pushed to the left of thissubword. Hen
e we obtain a redu
ed expression for w where no r appears afterthe �rst letter � and the thesis follows.(2) This is similar to the proof of (1) but in this 
ase a letter r 
an alsoappear on the right of the longest subword of the form ��� � � � tst and we aredone.
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onje
ture(3) Consider a redu
ed expression for w and look at the rightmost letter tand at the leftmost letter r of this redu
ed expression. If this t appears on theleft of this r we are done. Otherwise, by Lemma 4.3.6, there 
annot be a letters between them and rt = tr. So these two letters are adja
ent and hen
e we
an �nd a redu
ed expression for w in whi
h all the letters t appear before allthe letters r and the result follows. �Proposition 4.3.8 There exists x 2 fr; tg su
h that either M � �s or M � �son Wfs;xg(w).Proof. We may assume that [e; w℄ is not dihedral. Note that the result istrue for a spe
ial mat
hing M of [e; w℄ if and only if it is true for the spe
ialmat
hing ~M of [e; w�1℄ de�ned by ~M(x) := (M(x�1))�1, for all x � w�1. Wemay 
learly assume that M is not a multipli
ation mat
hing and that4 =2 fjWfr;sg(w)j; jWft;sg(w)jg: (4.3)In parti
ular, rs 6= sr and ts 6= st If M(r) = rs and M(t) = ts we are in 
ase(1) (possibly by ex
hanging the roles of r and t). If M(r) = sr and M(t) = stthen ~M is in 
ase (1). If M(r) = sr 6= rs and M(t) = ts 6= st we are in 
ase(3). So we only need to 
onsider these two 
ases.In 
ase (1) we have that � = s otherwise, by Proposition 4.3.7, Wfr;sg(w) =fe; s; r; rsg and this is not possible by (4.3). By 
ontradi
tion, suppose thatM 6� �s on Wfr;sg(w), and let y0 2 Wfr;sg(w) be a minimal element su
h thatM(y0) 6= y0s. By Lemma 4.3.5, y0t 6� w, but this is a 
ontradi
tion, sin
e w isnot dihedral.In 
ase (3) we 
laim that either M � �s on Wft;sg(w) or M � �s on Wfr;sg(w).We prove this statement by indu
tion on l(w). By Proposition 4.3.7 w =� � � tst| {z }k " rsr � � �| {z }h (this being a redu
ed expression), where " 2 fe; sg. By (4.3)we have h; k � 2. Let w1 and w2 be the two 
oatoms of [e; w℄ obtained bydeleting, respe
tively, the �rst and the last letter of this redu
ed expression ofw. Clearly, there exists i 2 f1; 2g su
h that M restri
ts to a spe
ial mat
hingof [e; wi℄. We assume i = 1 the 
ase i = 2 being similar. By our indu
tion hy-pothesis either M � �s on Wft;sg(w1) or M � �s on Wfr;sg(w1). In this se
ond
ase we are done sin
e Wfr;sg(w1) = Wfr;sg(w). So assume that M � �s onWft;sg(w1). But Wft;sg(w) nWft;sg(w1) = f� � � tst| {z }k ; � � � sts| {z }k+1 g and sin
e, by Propo-



4.3 Groups of rank 3 97sition 4.3.3, M stabilizes Wft;sg(w) we ne
essarily have M(� � � tst| {z }k ) = (� � � sts| {z }k+1 )and hen
e M � �s on Wft;sg(w). �Proposition 4.3.8 allows us to add some hypothesis to the 
ases we are dealingwith, without a�e
ting the generality of our argument.(1') M(t) = ts, sr 6= rs, M � �s on Wfs;rg(w) and M 6� �s on Wfs;tg(w).We let x0 be the minimal element su
h that M(x0) 6= x0s and we let��� � � � tst be its unique redu
ed expression.(2') M(t) = ts, rs = sr and M 6� �s on Wfs;tg(w). We let x0 be the mini-mal element su
h that M(x0) 6= x0s and we let ��� � � � tst be its uniqueredu
ed expression.(3') M(t) = ts 6= st, sr 6= rs and M � �s on Wfs;rg(w).The next result des
ribes how a spe
ial mat
hing a
ts on the interval [e; w℄.Proposition 4.3.9 In 
ase (1') let u � w, u = � � � r�r���� � � � where � 2fe; �g and � =2 DR(� � � r�r). Then M(u) = � � � r�rM(���� � � �).In 
ase (2') let u � w, u = � � � r�r�(��� � � �)Æ where � 2 fe; �g, Æ 2 fe; rgand � =2 DR(� � � r�r). Then M(u) = � � � r�rM(���� � � �)Æ.In 
ase (3') let u � w, u = � � � tst"rsr � � � where " 2 fe; sg and s =2DL(rsr � � �). Then M(u) =M(� � � tst")rsr � � �.Proof. (1') We pro
eed by indu
tion on l(u) the 
ase � � � r�r = e being trivialand the 
ase ���� � � � = e following by Lemma 4.3.2 if � = t and by ourhypotheses if � = s.So suppose that the length of the string � � � r�r is at least 1. We may assumethatM(���� � � �)B���� � � � 6= e, else the statement follows by our indu
tion hy-pothesis. Now let x 2 DL(� � � r�r). Then xuCu and by our indu
tion hypothesisM(xu) = x(� � � r�r)M(���� � � �). Now let v be the unique element su
h thatv C ���� � � � and M(v)B v. Then � � � r�rv C u and M(� � � r�rv) = � � � r�rM(v)by our indu
tion hypothesis. Sin
e � � � r�rM(���� � � �) 
overs u, M(xu) andM(� � � r�rv) and these three elements are 
learly distin
t, we ne
essarily haveM(u) = � � � r�rM(���� � � �).(2') We pro
eed by indu
tion on l(u). We may assume that M(���� � � �)B���� � � � as otherwise the statement follows by our indu
tion hypothesis. Sup-pose �rst that � � � r�r = e. Then we 
an assume Æ = r and ���� � � � 6= eas otherwise the result would be trivial. So, if we de�ne v as in 
ase (1'),
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onje
turewe have that vr and ���� � � � are both 
overed by u. Then M(u) is ne
es-sarily equal to M(���� � � �)r sin
e this is the unique element that 
overs u,M(vr) =M(v)r andM(���� � � �) and the result follows similarly. If � � � r�r 6= eand ���� � � � = e the 
laim follows from Lemma 4.3.2 and if � � � r�r 6= e and���� � � � 6= e the proof is similar to the 
ase (1').Case (3') is very similar to 
ase (1') and is left to the reader. �The next result gives some further restri
tions on a spe
ial mat
hing whi
his not a multipli
ation mat
hing.Proposition 4.3.10 In 
ase (1') let w = � � � r�r| {z }h ���� � � �, with � 2 fe; �g and� =2 DR(� � � r�r). If h � 2 and � 2 DL(w), then M Æ �� = �� ÆM .In 
ase (2') let w = � � � r�r| {z }h �(��� � � �)Æ, with � 2 fe; �g, Æ 2 fe; rg and� =2 DR(� � � r�r). If h � 2 and � 2 DL(w), then M Æ �� = �� ÆM .In 
ase (3') let w = � � � tst" rsr � � �| {z }h , with " 2 fe; sg and s =2 DL(rsr � � �). Ifh � 2 and s 2 DR(w), then M Æ �s = �s ÆM .Proof. By Lemma 4.2.5, we know that two spe
ial mat
hings M and N of aBruhat interval [e; w℄ 
ommute if and only if they do inside the dihedral intervals
ontaining M(e) and N(e).In 
ases (1') and (2'), sin
eM � �s onWfr;sg(w) it is 
lear thatM Æ�� = ��ÆMon Wfr;sg(w). So we only have to show that M Æ �� = �� ÆM on Wft;sg(w).Let u := ��� � � �| {z }k � w. We 
laim that if M(u)B u then M(u) = ��� � � �| {z }k+1 . Infa
t, 
onsider v := �r ��� � � �| {z }k�1 . It is 
lear that uCv � w. By Proposition 4.3.9 wehave thatM(v) = �rM(��� � � �| {z }k�1 ). Sin
e, by the de�nition of a spe
ial mat
hing,M(v)BM(u) we ne
essarily have M(��� � � �| {z }k�1 )B ��� � � �| {z }k�1 . By Proposition 4.3.3,M(��� � � �| {z }k�1 );M(u) 2Wfs;tg(w), so M(v) = �r ��� � � �| {z }k and M(u) = ��� � � �| {z }k+1 .Now 
onsider an orbit of hM;��i inside Wfs;tg(w) of 
ardinality greaterthan 2. We show that the 
ardinality of this orbit is ne
essarily 4. Let z be thesmallest element of this orbit, say z = ��� � � �| {z }k�1 . Then ��(z) = ��� � � �| {z }k , for
ingM(z) = ��� � � �| {z }k . Then by our 
laim M(��(z)) = ��� � � �| {z }k+1 = ��(M(z)).The proof of 
ase (3') is very similar and is left to the reader. �



4.4 Main result 99The following result is not needed in the sequel and is a parti
ular 
ase ofTheorem 4.4.7. Nevertheless we state and prove it to 
omplete the dis
ussionon groups of rank 3.Theorem 4.3.11 Let (W;S) be a Coxeter system of rank 3, w 2W , l(w) > 1and M be a spe
ial mat
hing of [e; w℄. Suppose that [e; w℄ is not a dihedralinterval. Then there exists a multipli
ation mat
hing N of [e; w℄ su
h that1. N(M(u)) =M(N(u)), for all u � w;2. N(w) 6=M(w).Proof. We 
an 
learly assume that M is not a multipli
ation mat
hing. Infa
t, if M = �s then w has a redu
ed expression having s as a �rst letterw = ss1 � � � sk and hen
e it is enough to set N = �sk , and similarly if M = �s.Note also that the statement is true for M if and only if it is for the spe
ialmat
hing ~M de�ned in the proof of Proposition 4.3.8. If there exists a t 2 Ssu
h thatM is not a multipli
ation mat
hing onWfs;tg(w) then, by Proposition4.3.8, either M or ~M is in one of the 
ases (1'), (2') or (3'). If su
h a t does notexist we are ne
essarily in 
ase (3'). So we are redu
ed to 
onsider these 3 
ases.In 
ases (1') and (2'), if r 2 DL(w) it is enough to take N = �r . Otherwisewe ne
essarily have � 2 DL(w) and �r 6= r�. Then, by Proposition 4.3.10,M Æ �� = �� ÆM and, by Proposition 4.3.9, M(w) 6= ��(w). On
e again 
ase(3') is similar and is left to the reader. �4.4 Main resultNow we fa
e the problem of a spe
ial mat
hing of an interval [e; w℄ where wbelongs to an arbitrary Coxeter group. We re
all the following result for futurereferen
es. It follows by the proof of Theorem 5.2 of [17℄ and in fa
t holds inmu
h more generality (see Theorem 7.2.3).Theorem 4.4.1 Let (W;S) be a Coxeter system, w 2 W and M be a spe
ialmat
hing of [e; w℄. Suppose that, for all v � w with M(v) C v, there exists amultipli
ation mat
hing Nv of [e; v℄ su
h thatMNv � NvM and M(v) 6= Nv(v).Then eRu;w(q) = eRM(u);M(w)(q) + �(M(u)B u) q eRu;M(w)(q)for all u � w.
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Figure 4.5: Proof of Lemma 4.4.3.Lemma 4.4.2 Let w 2 W andM be a spe
ial mat
hing of [e; w℄ withM(e) = s.Then there exists at most one x 2 S su
h that M 6� �s and M 6� �s onWfs;xg(w).Proof. Suppose there are 2 su
h elements, say t and r. It is known that for allJ � S there exists a unique maximal element in WJ (w) that we denote w[J ℄, sothat WJ (w) = [e; w[J ℄℄. By Proposition 4.3.3,M restri
ts to a spe
ial mat
hingof [e; w[fs; r; tg℄℄. But this 
ontradi
ts with Proposition 4.3.8. �Lemma 4.4.3 Let w 2 W ,M be a spe
ial mat
hing of [e; w℄ and s =M(e). Lett; r 2 S be su
h thatM(t) = ts 6= st and M(r) = sr 6= rs and let k1; : : : ; kp 2 Snfsg, p 2 N, be su
h that kjs = skj for j 2 [p℄. Suppose that rk1 � � � kpt � w andl(rk1 � � � kpt) = p + 2 . Then there exist h1; : : : hp 2 S su
h that fk1; : : : ; kpg =fh1; : : : ; hpg and i 2 [0; p℄ su
h that rk1 � � � kpt = h1 � � �hitrhi+1 � � �hp.Proof. By Proposition 4.3.3 and Lemma 4.3.6 (applied to the interval [e; w[J ℄℄,where J := fs; r; tg), we have that tr = rt, so the result holds if p = 0. Wepro
eed by indu
tion on p. Let u := rk1 � � � kpt. It su�
es to show that eitherDL(u) 6= frg or DR(u) 6= ftg, the result then following by indu
tion on p.It is 
lear that k1 � � � kpt C u. Furthermore, by Lemma 4.3.2, M(k1 � � � kpt) =k1 � � � kpts and similarly M(rk1 � � � kp) = srk1 � � � kp (see Figure 4.5). Therefore,sin
e M is a spe
ial mat
hing, M(u) B u, M(u) B k1 : : : kpts, and M(u) Bsrk1 : : : kp. If r is the unique left des
ent of u and t is its unique right des
entthen ne
essarily either r 2 DL(M(u)) or t 2 DR(M(u)) (or both). Supposer 2 DL(M(u)) the other 
ase being similar. Sin
e r � k1 � � � kpts and M(u) B



4.4 Main result 101k1 � � � kpts we haveM(u) = rk1 � � � kpts. Now, sin
e rk1 � � � kptsBsrk1 � � � kp andt � srk1 � � � kp we have rk1 � � � kps = srk1 � � � kp; whi
h implies sr = rs and thisis a 
ontradi
tion. �Proposition 4.4.4 Let J := fr 2 S : M(r) = srg and J 0 := fr 2 S : M(r) =sr 6= rsg � J . Then uJ 2WSnJ0 for all u � w.Proof. Note �rst that J 0 = fr 2 J : rs 6= srg. Let u 2 [e; w℄. Fix a redu
edexpression of uJ . Suppose, by 
ontradi
tion, that fr 2 S : r � uJg \ J 0 6= ;.Consider the last letter of r 2 J 0 appearing in this expression, say r. Then
onsider the �rst letter t =2 J after r. Between r and t there 
annot be any s byLemma 4.3.6. Hen
e there 
an only be letters 
ommuting with s. By Lemma4.4.3 after a �nite number of steps we �nd a redu
ed expression of uJ that endswith a letter in J whi
h is 
learly a 
ontradi
tion. �Proposition 4.4.5 Let t 2 S be su
h that M is not a multipli
ation mat
hingon Wfs;tg(w). Suppose that M(t) = ts and denote by x0 = ��� � � � tst theminimal element in Wfs;tg(w) su
h that M(x0) 6= x0s. Then � � (uJ)fs;tg forall u � w.Proof. Consider a redu
ed expression for uJ and a longest subsequen
e of thisexpression of the form ��� � � � tst, 
hosen with the left-most � and the right-most t. Consider the �rst letter r whi
h appears after the �rst � distin
t froms and t. If M(r) = rs 6= sr then this letter 
an be pushed on the left of the �rst� by Lemma 4.3.5. If M(r) = rs = sr then, by Lemma 4.3.5, we are in one ofthe following three possibilities: r 
ommutes also with t, or it 
an be pushed onthe left or it appears after the last t. In the �rst two 
ases it 
an be pushed onthe left. So we 
an suppose that the �rst su
h letter r appear after the last t.By Lemma 4.3.5, all the letters that appear after the last t ne
essarily belongto J . So uJ has a redu
ed expression in whi
h after the �rst letter � there areonly letters s and t and this 
learly implies the statement. �Theorem 4.4.6 Let (W;S) be a Coxeter system, w 2 W and M be a spe
ialmat
hing of [e; w℄ with M(e) = s. Let J := fr 2 S : M(r) = srg. Then(i) If there exists a (ne
essarily unique) t 2 S su
h thatM(t) = ts butM 6� �son Wfs;tg(w), thenM(u) = (uJ)fs;tgM�(uJ)fs;tg(uJ)fsg� fsg(uJ);
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onje
turefor all u � w.(ii) If M is a multipli
ation mat
hing on Wfx;sg for all x 2 S, thenM(u) = uJsuJ ;for all u � w.Proof. (i) We pro
eed by indu
tion on l(u) the result being 
lear if l(u) = 0.Note that, by Proposition 4.3.3,M�(uJ )fs;tg(uJ)fsg� 2Wfs;tg(w) and so, if weset u0 := (uJ)fs;tgM�(uJ)fs;tg(uJ )fsg� fsg(uJ);then (u0J)fs;tg(u0J)fsg = M�(uJ )fs;tg(uJ)fsg�. We may assume that M(u) Bu and that M�(uJ)fs;tg(uJ)fsg� B (uJ)fs;tg(uJ )fsg otherwise we are done byindu
tion.Note �rst that if u = (uJ)fs;tg the result follows from Propositions 4.4.4 and4.4.5 and Lemma 4.3.2, if u = (uJ)fs;tg(uJ)fsg it is trivial, and if u = fsg(uJ)it follows from Lemma 4.3.2. Now 
onsider the following three possibilities:1. If (uJ )fs;tg 6= e let x1 2 DL((uJ)fs;tg) and u1 := x1u.2. If (uJ )fs;tg(uJ)fsg 6= e let v C (uJ)fs;tg(uJ )fsg be su
h that M(v)B v andlet u2 := (uJ)fs;tgv fsg(uJ).3. If fsg(uJ) 6= e let x3 2 DR(fsg(uJ)) and u3 := ux3.By our previous remark, we may 
ertainly assume that at least two of thesethree hypotheses are satis�ed and hen
e that there exists i; j 2 f1; 2; 3g, i 6= j,su
h that ui and uj 
an be de�ned as above. Applying our indu
tion hy-pothesis to ui and uj we have that M(ui) B ui, M(uj) B uj . The element(uJ)fs;tgM�(uJ)fs;tg(uJ )fsg� fsg(uJ ) 
overs u, M(ui) and M(uj). By Proposi-tion 4.1.2, we 
on
lude that M(u) = (uJ)fs;tgM�(uJ)fs;tg(uJ)fsg� fsg(uJ).(ii) This is similar and simpler than 
ase (i) and is left to the reader. �Theorem 4.4.7 Let (W;S) be a Coxeter system, w 2 W , l(w) > 1 and M bea spe
ial mat
hing of [e; w℄ and suppose that [e; w℄ is not a dihedral interval.Then there exists a multipli
ation mat
hing N of [e; w℄ su
h that1. N(M(u)) =M(N(u)), for all u � w;



4.4 Main result 1032. N(w) 6=M(w).Proof. Again we note that the result is true for a spe
ial mat
hing M if andonly if it is true for ~M and hen
e we 
an suppose that we are in one of thetwo 
ases of Theorem 4.4.6. Suppose to be in 
ase (i). If (wJ )fs;tg 6= e letx 2 DL((wJ )fs;tg). If x 6= � then we 
hoose N = �x. We have M � �s onWs;x(w) by Proposition 5.14 and hen
e we are done by Lemma 4.2.5. If x = �then there exists r 2 S, r < (wJ )fs;tg su
h that �r 6= r�. Then if we let K :=fr; s; tg, Proposition 4.3.10 applied to the interval [e; w[K℄℄ = WK(w) impliesthat M�� = ��M and the thesis follows by Lemma 4.2.5. If (wJ )fs;tg = e thenne
essarily fsg(uJ) 6= e (otherwise [e; w℄ is dihedral) and we pro
eed in a similarway 
onsidering a right des
ent of fsg(uJ ).If we are in 
ase (ii) the proof is left to the reader. �As a 
orollary of Theorem 4.4.7, we 
an prove Lusztig's 
onje
ture on thelower Bruhat interval of any Coxeter system.Corollary 4.4.8 Let (W;S) be a Coxeter system, w 2 W and M be a spe
ialmat
hing of [e; w℄. TheneRu;w(q) = eRM(u);M(w)(q) + �(M(u)B u) q eRu;M(w)(q)for all u � w.Proof. Straightforward by Theorems 4.4.1 and 4.4.7. �Corollary 4.4.9 Let (W;S) and (W 0; S0) be two Coxeter systems, w 2 W andw0 2 W 0, and let e and e0 be the identities of W and W 0, respe
tively. Supposethat � : [e; w℄! [e0; w0℄ is an isomorphism of posets.Then, for all u; v 2 [e; w℄, we have:- Pu;v(q) = P�(u);�(v)(q),- Ru;v(q) = R�(u);�(v)(q),- eRu;v(q) = eR�(u);�(v)(q).Proof. Straightforward by Corollary 4.4.8. �
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onje
ture4.5 He
ke algebra a
tionsIn this se
tion we introdu
e and study, for ea
h v 2W , a He
ke algebra naturallyasso
iated to the spe
ial mat
hings of [e; v℄ and an a
tion of it on the submoduleof the He
ke algebra of W spanned by fTu : u � vg. This a
tion enables us toreformulate Corollary 4.4.8 in a very 
ompa
t way in Theorem 4.5.2 by sayingthat this a
tion �respe
ts� the 
anoni
al involutions � of these He
ke algebras.This, in turn, implies that the usual re
ursion for Kazhdan-Lusztig polynomials(Theorem 0.5.9) holds also when des
ents are repla
ed by spe
ial mat
hings(Corollary 4.5.4) thus giving a poset theoreti
 re
ursion for the Kazhdan-Lusztigpolynomials whi
h does not involve the R-polynomials.Let v 2 W and Sv be the 
olle
tion of all the spe
ial mat
hings of [e; v℄.We denote by (
Wv ;Sv) the Coxeter system whose Coxeter generators are theelements of Sv and whose Coxeter matrix is given by m(M;N) := o(MN), theperiod ofMN as a permutation of [e; v℄. Then it is 
lear that we have a naturala
tion of 
Wv on the ve
tor spa
e �u�vC u. We denote by bHv the He
ke algebraof 
Wv and by Hv the submodule of H de�ned byHv :=Mu�vZ[q 12 ; q� 12 ℄Tu:Our �rst result de�nes the a
tion of bHv on Hv that we wish to study. Itis a natural generalization, and uni�
ation, of the left and right multipli
ationa
tions of H(WDL(v)) and H(WDR(v)) on Hv .Proposition 4.5.1 Let v 2W . Then there exists a unique a
tion of bHv on Hvsu
h that TM (Tu) = ( TM(u); if M(u)B u;qTM(u) + (q � 1)Tu; otherwise; (4.4)for all u � v and all M 2 Sv.Proof. The uniqueness part is trivial. To prove the existen
e we only have to
he
k that TM (TM (Tu)) = ((q � 1)TM + q)(Tu) for all u � v and M 2 Sv , andthat, if M;N 2 Sv and m := m(M;N), thenTM (TN (TM (� � �| {z }m (Tu)))) = TN(TM (TN(� � �| {z }m (Tu)))) (4.5)for all u � v. The proof of the �rst part is a simple veri�
ation and is left to



4.5 He
ke algebra a
tions 105the reader.To prove the se
ond one let M;N 2 Sv be su
h that m(M;N) = m andu 2 [e; v℄. If jhM;Ni(u)j = 2d then ne
essarily d j m. Let I2(d) be the dihedralgroup of order 2d and s and t, with m(s; t) = d, be its Coxeter generators. Wede�ne a poset isomorphism � : hM;Ni(u) �! I2(d) by�(� � �MNM| {z }k (u0)) := � � � sts| {z }k ;for all k 2 [2d℄, where u0 is the smallest element in hM;Ni(u), and extend thisto a linear map � : H(hM;Ni(u)) �! H(I2(d)) (where H(hM;Ni(u)) is thesubmodule of Hv spanned by fTx : x 2 hM;Ni(u)g) by �(Tx) := T�(x) for allx 2 hM;Ni(u). Then it is 
lear that �(TM Æ Tx) = Ts�(Tx) and �(TN Æ Tx) =Tt�(Tx) for all x 2 hM;Ni(u). There follows that�(TM (TN (TM (� � �| {z }d (Tx)))) = TsTtTs � � �| {z }d �(Tx)= TtTsTt � � �| {z }d �(Tx)= �(TN (TM (TN (� � �| {z }d (Tx)))):Hen
e TM (TN (TM (� � �| {z }d (Tx)))) = TN(TM (TN (� � �| {z }d (Tx)))) for all x 2 hM;Ni(u)and (4.5) follows. �It is natural to wonder about the faithfulness of the a
tion de�ned in (4.4).This will be adressed in Chapter 6.We 
an now state and prove the �rst main result of this se
tion, whi
h isa 
ompa
t reformulation of our main result (Corollary 4.4.8) in terms of thea
tion of bHv on Hv . Note that, by Proposition 0.5.1, Hv is invariant under theinvolution � de�ned on H. For 
onvenien
e, we use the same symbol � also forthe 
orresponding involution of the He
ke algebra bHv.Theorem 4.5.2 Let v 2 W . Then for all h 2 Hv, ĥ 2 bHv�(ĥ(h)) = �(ĥ)(�(h)):Proof. We may 
learly assume that h = Tu for some u � v and ĥ = TM , where
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onje
tureM is a spe
ial mat
hing of [e; v℄.Suppose �rst that uCM(u). Then, by (4.4) and Proposition 0.5.1, we have�(TM (Tu)) = �(TM(u)) = �TM(u)�1��1 = �"uq�l(u)�1Xx "xRx;M(u) Tx:where "y = (�1)l(y) for all y 2W .On the other hand�(TM )(�(Tu)) = T�1M (T�1u�1)= [q�1TM � (1� q�1)℄ ("uq�l(u)Xx "xRx;u Tx)= "uq�l(u)n Xx/M(x)[q�1"xRx;u TM(x) � (1� q�1)"xRx;u Tx℄ +Xx.M(x)[q�1"xRx;u(qTM(x) + (q � 1)Tx)� (1� q�1)"xRx;u Tx℄o= �"uq�l(u)h XM(x)Cx q�1"xRM(x);u Tx +XM(x)Bx(1� q�1)"xRx;uTx + XM(x)Bx "xRM(x);uTxi= �"uq�l(u)h XM(x)/x q�1"xRx;M(u) Tx + Xx/M(x) q�1"xRx;M(u) Txiby Corollary 4.4.8 and the assertion follows in this 
ase.Suppose now that u BM(u). Then applying what we have just proved toM(u) yields thatT�1u�1 = �(Tu) = �(TM (TM(u))) = �(TM )(�(TM(u))) = T�1M (T�1M(u)�1)Therefore, by Proposition 4.4, TM (T�1u�1) = T�1M(u)�1 . Hen
e�(TM (Tu)) = �(qTM(u) + (q � 1)Tu)= q�1T�1M(u)�1 + (q�1 � 1)T�1u�1= q�1TM (T�1u�1) + (q�1 � 1)T�1u�1= [q�1TM � (1� q�1)℄(T�1u�1)= T�1M (T�1u�1)
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ke algebra a
tions 107= �(TM )(�(Tu));and the result again follows. �Re
all from Theorem 0.5.4 the de�nition of the Kazhdan-Lusztig basis C 0 =fC 0v : v 2Wg of the He
ke algebra of W .Theorem 4.5.3 Let v 2 W and M 2 Sv. Then, for all x 2 [e; v℄,C 0M (C 0x) = 8><>: C 0M(x) + Xfz: M(z)Czg�(z; x)C 0z ; if M(x)B x,(q 12 + q� 12 )C 0x; if M(x)C x,in Hv.Proof. Suppose �rst that M(x) B x. Let, for brevity, DM(x) := C 0M (C 0x) �Pfz:M(z)/zg �(z; x)C 0z . To prove that DM(x) = C 0M(x) we use the 
hara
teriza-tion of the Kazhdan-Lusztig basis given in Theorem 0.5.4 ([39, Theorem 7.9℄).It is 
lear from Theorem 4.5.2 that �(DM(x)) = DM(x) . So we only need toshow that if DM(x) = q� l(M(x))2 Xu�M(x) ePu;M(x)(q)Tu;theni) ePM(x);M(x)(q) = 1,ii) ePu;M(x)(q) 2 Z[q℄ and has degree < 12 l(u;M(x)) if u < M(x).We distinguish two 
ases.Suppose uCM(u). Then TM (C 0x) involves Tu with 
oe�
ient q� l(x)2 qPM(u);x(q).It follows easily that the 
oe�
ient of Tu in C 0M (C 0x) isq� l(M(x))2 qPM(u);x(q) + q� l(M(x))2 Pu;x(q):On the other hand, if u BM(u), TM (C 0x) involves Tu with 
oe�
ient equal toq� l(x)2 (PM(u);x(q) + (q � 1)Pu;x(q)). Again it follows easily that the 
oe�
ientof Tu in C 0M (C 0x) is q� l(M(x))2 PM(u);x(q) + q� l(M(x))2 qPu;x(q):
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onje
tureFinally, the 
oe�
ient of Tu in P�(z; x)C 0z is in both 
asesXfz:M(z)Czg�(z; x)q� l(z)2 Pu;z(q):So, if we set 
 = 1 if M(u)C u and 
 = 0 otherwise, we only have to show thatthe polynomialsq1�
PM(u);x(q) + q
Pu;x(q)� Xfz :M(z)Czg �(z; x)q l(z;M(x))2 Pu;z(q)satisfy properties i) and ii). The proof of this fa
t 
an be done in exa
tly thesame way as the proof of [39, Theorem 7.9℄ (see [39, x 7.11℄) and it is thereforeomitted.Assume now that M(x) C x. We pro
eed by indu
tion on l(x). If l(x) = 1then ne
essarily x =M(e) and the result is easy to verify. So assume l(x) � 2.Then by what we have just proved we have thatC 0x = C 0M (C 0M(x))� Xfz: M(z)Czg�(z;M(x))C 0z : (4.6)Therefore, sin
e C 0MC 0M = (q 12 + q� 12 )C 0M ,C 0M (C 0x) = (C 0MC 0M )(C 0M(x))� Xfz:M(z)Czg �(z;M(x))C 0M (C 0z)= (q 12 + q� 12 )C 0x;by (4.6) and our indu
tion hypothesis, as desired. �Theorem 4.5.3, and its proof, imply the following poset theoreti
 re
ursionfor Kazhdan-Lusztig polynomials depending on spe
ial mat
hings. It generalizesthe usual re
ursion for Kazhdan-Lusztig polynomials depending on left or rightdes
ents (Theorem 0.5.9).Corollary 4.5.4 Let u; v 2 W , u < v, and M be a spe
ial mat
hing of [e; v℄.ThenPu;v(q) = q1�
PM(u);M(v)(q)+q
Pu;M(v)(q)� Xfz :M(z)Czg�(z;M(v))q l(z;v)2 Pu;z(q)where 
 = 1 if M(u)C u and 
 = 0 otherwise. �



4.5 He
ke algebra a
tions 109We illustrate Corollary 4.5.4 with an example. Let v = 34 2 1 2 S(4). TheBruhat interval [e; v℄ has 5 distin
t spe
ial mat
hings, l2; �2; �3; �2; �1, whi
hare shown in Figure 4.6 (for the reason of the notation l2 see Theorem 0.7.3).Using Corollary 4.5.4 for the spe
ial mat
hing l2 we obtainPe;v = qPl2(e);l2(v) + Pe;l2(v) � Xfz:l2(z)Czg�(z; l2(v))q l(z;v)2 Pe;z= qP1324;3412 + Pe;3412 � (1 � q � Pe;1432 + 1 � q � Pe;3214 + 1 � q2 � Pe;1324)= q(q + 1) + (q + 1)� q � q � q2:Note that using the other 4 spe
ial mat
hings we obtain genuinely di�erent
omputations for Pe;3421. In fa
t, we obtainPe;3421 = 8>>>><>>>>: q + 1� q using �2;q + (1 + q)� q � q using �3;q + 1� q using �2;q + (1 + q)� q � q using �1:The reason for this is that the spe
ial mat
hing l2 is not isomorphi
 to any otherspe
ial mat
hing of [e; 3421℄, namely that do not exist a poset- automorphism �of [e; 3421℄ and a spe
ial mat
hingM of [e; 3421℄ satisfying �l2(x) =M�(x). Infa
t, any automorphism � of [e; 3421℄must �x 1324 and 3412, namely �(1324) =1324 and �(3412) = 3412. Therefore, any spe
ial mat
hing M of [e; v℄ su
hthat � ÆM = l2 Æ � must satisfy M(e) = 1324 and M(3421) = 3412, but l2 isthe unique spe
ial mat
hing of [e; v℄ satisfying these two 
onditions. A
tually,more is true. Suppose that u 2 S(n) is su
h that [e; u℄ �= [e; 3421℄ (poset-isomorphism). Sin
e [e; v℄ has only three atoms we dedu
e that any redu
edexpression of u is 
omposed of letters of exa
tly 3 di�erent kinds, say si; sj andsk, with i < j < k. If these indi
es are not 
onse
utive we would have at most4 permutations of length 2 in [e; u℄. So the indi
es must be 
onse
utive andwe may assume that si = s1, sj = s2, sk = s3 and u 2 S(4). But in S(4)there are only 3 permutations of length 5, namely v; v�1 and 4231, and [e; 4231℄has 4 
oatoms. Hen
e the spe
ial mat
hing l2 of [e; 3421℄ is not isomorphi
 toany multipli
ation mat
hing in any symmetri
 group. In fa
t, with more workone 
an show that the spe
ial mat
hing l2 of [e; 3421℄ is not isomorphi
 to anymultipli
ation mat
hing in any Coxeter system (even in�nite). We leave this tothe interested reader.
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ements l2�2�3�2�1Further 
overing relationsFigure 4.6: The spe
ial mat
hings of [e; 3421℄.



Chapter 5Combinatorial poset theoreti
formulaeIn this 
hapter, we introdu
e three families of sequen
es of spe
ial mat
hings:the regular sequen
es, the B-regular sequen
es, and the R-regular sequen
es. Allof them are new 
ombinatorial analogues of the 
on
ept of redu
ed expression.Using these sequen
es, we �nd some formulae valid for Kazhdan-Lusztig andR-polynomials of any Coxeter system.5.1 Regular sequen
esOur purpose in this se
tion is to generalize an algorithm and a 
losed formulaof Deodhar ([28, Algorithm 4.11℄ and [26, Theorem 1.3℄) for Kazhdan-Lusztigand R-polynomials, respe
tively.Let v 2 W . We say that a sequen
e (M1; : : : ;Ml) (where l := l(v)) is aregular sequen
e (of spe
ial mat
hings) for v if, for all i = 1; : : : ; l, Mi is aspe
ial mat
hing of [e;Mi+1 � � �Ml(v)℄. Note that, in parti
ular,M1 � � �Ml(v) =e. The regular 
hain asso
iated to a regular sequen
e (M1; : : : ;Ml) for v is(v0; : : : ; vl) where vi :=Mi+1 � � �Ml(v) =Mi � � �M1(e), for i = 0; : : : ; l. Clearly,e = v0 C v1 C � � �C vl = v and Mi(vi�1) = vi, for i = 1; : : : ; l.For example, if W = S(4) and v = 3421 then the sequen
e (�1; �3; �2; �2; l2)illustrated in Figure 4.6 is a regular sequen
e for v. Note that, if si1 � � � sil isa redu
ed expression for v, then (�il ; : : : ; �i1) and (�i1 ; : : : ; �il) are two regularsequen
es for v. Thus, the 
on
ept of a regular sequen
e is a generalization of111
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 formulaethat of a redu
ed expression. We say that a regular sequen
eM = (M1; : : : ;Ml)for v 
omes from a redu
ed expression if there is a redu
ed expression si1 � � � silof v su
h that either M = (�il ; : : : ; �i1 ) or M = (�i1 ; : : : ; �il).Our �rst results are the analogues, for any regular sequen
e, of two wellknown results for redu
ed expressions. They are used repeatedly throughoutthe rest of this work, often without expli
it mention.Lemma 5.1.1 Let v 2 W , and (M1; : : : ;Ml) be a regular sequen
e for v. Thenfor all u � v there exists 1 � i1 < : : : < ik � l su
h that (Mi1 ; : : : ;Mik) is aregular sequen
e for u.Proof. We pro
eed by indu
tion on l the statement being trivial for l = 1.So assume that l > 1. Note that (M1; : : : ;Ml�1) is a regular sequen
e forMl(v). Let u 2 [e; v℄. If Ml(u) C u then, by Lemma 0.7.1, Ml(u) � Ml(v) soby indu
tion there exist 1 � i1 < : : : < ik � l � 1 su
h that (Mi1 ; : : : ;Mik) is aregular sequen
e for Ml(u), hen
e (Mi1 ; : : : ;Mik ;Ml) is a regular sequen
e foru. If Ml(u) B u then, by Lemma 0.7.1, u � Ml(v) and we 
on
lude again byindu
tion. �As a 
orollary of the previous result, we obtain a generalization of the Ex-
hange Property (Theorem 0.3.1).Corollary 5.1.2 Let v 2W and (M1; : : : ;Ml) be a regular sequen
e for v. LetM be a spe
ial mat
hing of v. Then there exists i 2 [l℄ su
h thatM(v) =MMl � � �M1(e) =Ml � � � 
Mi � � �M1(e);where 
Mi means that Mi has been deleted.Proof. By Lemma 5.1.1, there exists a subsequen
e of (M1; : : : ;Ml) whi
h is aregular sequen
e for M(v). �Lemma 5.1.3 Let v 2 W and (M1; : : : ;Ml) be a regular sequen
e for v. Thenthe 
omposition Mik � � �Mi1(e) is de�ned for any 1 � i1 < i2 < � � � < ik � l.Proof. Let (v0; : : : ; vl) be the regular 
hain asso
iated to (M1; : : : ;Ml). Wewill show that Mik � � �Mi1(e) is de�ned and Mik � � �Mi1(e) � vik for all 1 �i1 < i2 < � � � < ik � l.We pro
eed by indu
tion on k, the 
laim being 
lear if k = 0. So let 1 � i1 <i2 < � � � < ik � l, with k � 1. By our indu
tion hypothesis u :=Mik�1 � � �Mi1(e)is de�ned and u � vik�1 < vik . But, by the de�nition of a regular sequen
e of



5.1 Regular sequen
es 113spe
ial mat
hings, Mik is a spe
ial mat
hing of [e; vik ℄. Therefore Mik(u) isde�ned and Mik(u) � vik , as desired. �Let v 2 W and M = (M1; : : : ;Ml) be a regular sequen
e for v (so l = l(v)).Given S = fi1; : : : ; ikg< � [l℄ we let�(S) :=Mik � � �Mi1(e)and we de�ne, for ea
h j 2 [l℄,"j(S) := ( 1; if Mj(y)C y,0; if Mj(y)B y,where y := �(S \ [j � 1℄). We also letd1(S; l) := Xj2[l℄nS "j(S)and d2(S) :=Xj2S "j(S):Note that (Mi1 ; : : : ;Mik) is a regular sequen
e for Mik � � �Mi1(e) if and only ifd2(S) = 0. Let, for brevity,d(S; l) := d1(S; l) + d2(S):We say that S is distinguished, with respe
t to M, if d1(S; l) = 0. In the 
asethat M 
omes from a redu
ed expression this 
on
ept 
oin
ides with the oneintrodu
ed by Deodhar in [26, Def. 2.3℄. We denote by D(M) the set of allsubsets of [l℄ whi
h are distinguished with respe
t toM, and we let, for u 2 W ,D(M)u := fS 2 D(M) : �(S) = ug:We 
an now prove the �rst main result of this se
tion. It is a 
losed formulafor R-polynomials whi
h generalizes Theorem 1.3 of [26℄.Theorem 5.1.4 Let v 2 W and M = (M1; : : : ;Ml) be a regular sequen
e forv. Then eRu;v(q) = XS2D(M)u ql(v)�jSj;
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 formulaefor all u 2W .Proof. Our proof is similar to the one given in [26, �5℄, but simpler. The resultis 
lear if u � v, so assume u � v. We pro
eed by indu
tion on l := l(v), theresult being trivial if l = 0.So assume l � 1 and let, for 
onvenien
e, M := Ml. We distinguish two
ases.a) M(u)C u.This implies that if S 2 D(M)u then l 2 S by the de�nition of a distinguishedsubset. Note that (M1; : : : ;Ml�1) is a regular sequen
e forM(v). De�ne a map' : D(M)u �! D(M1; : : : ;Ml�1)M(u)by letting '(S) = S n flg for all S 2 D(M)u. The map ' is well-de�ned andbije
tive sin
e l 2 S. Therefore, by Corollary 4.4.8 and our indu
tion hypothesisXS2D(M)u ql(v)�jSj = XS02D(M1;:::;Ml�1)M(u) ql(M(v))�jS0j = eRM(u);M(v)(q) = eRu;v(q):b) M(u)B u.Let D(M)�u := fS 2 D(M)u : l =2 Sg and D(M)+u := fS 2 D(M)u : l 2 Sg.De�ne a map ' : D(M)u �! D(M1; : : : ;Ml�1)u [ D(M1; : : : ;Ml�1)M(u) byletting '(S) = ( S; if l =2 S;S n flg; if l 2 S;for all S 2 D(M)u.We 
laim that ' is a bije
tion, that '(D(M)�u ) = D(M1; : : : ;Ml�1)u andthat '(D(M)+u ) = D(M1; : : : ;Ml�1)M(u). All veri�
ations are obvious, ex
eptfor the surje
tivity of '. But if S0 2 D(M1; : : :Ml�1)u then S0 2 D(M)u (sin
eM(u) B u), and if S00 2 D(M1; : : : ;Ml�1)M(u) then S00 [ flg 2 D(M)u andthis proves the surje
tivity. Therefore, by Corollary 4.4.8 and our indu
tionhypothesis, XS2D(M)u ql(v)�jSj = XS02D(M1;:::;Ml�1)u ql(M(v))�jS0j+1 +XS002D(M1;:::;Ml�1)M(u) ql(M(v))�jS00j= q eRu;M(v)(q) + eRM(u);M(v)(q)
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es 115= eRu;v(q);as desired. �The pre
eding result has the following 
onsequen
e, whi
h is needed in therest of this se
tion, and whi
h appears to be di�
ult to prove dire
tly.Corollary 5.1.5 Let v 2 W and (M1; : : : ;Ml) be a regular sequen
e for v.Then � is a bije
tion between fS � [l℄ : d1(S; l) = d2(S) = 0g and [e; v℄.Proof. Clearly, �(S) 2 [e; v℄. Furthermore, sin
e [tl(u;v)℄( eRu;v) = 1 for allu 2 [e; v℄, we 
on
lude from Theorem 5.1.4 that for ea
h u 2 [e; v℄ there existsa unique distinguished subset Su su
h that �(Su) = u. Sin
e a subset S � [l℄ isdistinguished if and only if d1(S; l) = 0, and sin
e l(�(S)) = jSj if and only ifd2(S) = 0, the result follows.�In order to prove the se
ond main result of this se
tion we need some furtherproperties of the a
tion of the He
ke algebra bHv on the module Hv de�ned inSe
tion 4.5. The next result is the analogue, for regular sequen
es, of Proposition3.5 of [28℄.Proposition 5.1.6 Let v 2 W and (M1; : : : ;Ml) be a regular sequen
e for v.Then q l2C 0Ml(C 0Ml�1 (� � � (C 0M1(Te)))) = XS�[l℄ qd(S;l)T�(S); (5.1)in Hv.Proof. Let, for brevity, C 0i := C 0Mi and Ti := TMi for i = 1; : : : ; l. Note �rstthat the left-hand side of (5.1) is well de�ned sin
e C 0i; Ti 2 bHvi , for i = 1; : : : ; l,(where (v0; : : : ; vl) is the regular 
hain asso
iated to (M1; : : : ;Ml)). We pro
eedby indu
tion on l � 1, (5.1) being 
lear if l = 1.So let l � 2 and suppose that (5.1) holds for l�1. Re
all that C 0i = q� 12 (1+Ti).Then we haveq l2C 0l((C 0l�1((� � � ((C 01(Te)))) = (1 + Tl)� XS�[l�1℄ qd(S;l�1)T�(S)�= XS�[l�1℄ qd(S;l�1)T�(S)
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 formulae+ XfS�[l�1℄:Ml(�(S))B�(S)g qd(S;l�1)TMl(�(S))+ XfS�[l�1℄:Ml(�(S))C�(S)g qd(S;l�1)(qTMl(�(S)) + (q � 1)T�(S))= XfS�[l�1℄:Ml(�(S))B�(S)g qd(S;l�1)T�(S)+ XfS�[l�1℄:Ml(�(S))B�(S)g qd(S;l�1)T�(S[flg)+ XfS�[l�1℄:Ml(�(S))C�(S)g qd(S;l�1)+1(T�(S[flg) + T�(S))= XS�[l�1℄ qd(S;l)T�(S) + XS�[l�1℄ qd(S[flg;l)T�(S[flg);sin
e d(S; l) = d(S [ flg; l) = d(S; l � 1) + "l(S), and (5.1) follows. �For brevity, we 
all a Coxeter system (W;S) nonnegative if its Kazhdan-Lusztig polynomials Pu;v have nonnegative 
oe�
ients for all u; v 2W .Proposition 5.1.7 Let (W;S) be a nonnegative Coxeter system, v 2 W , and(M1; : : : ;Ml) be a regular sequen
e for v. Then there exist Lx 2 N[q 12 + q� 12 ℄,for ea
h x � v, su
h that Lv = 1 andC 0Ml(C 0Ml�1 (� � � (C 0M1(Te)))) =Xx�vLxC 0x: (5.2)Proof. Let, for brevity, C 0i := C 0Mi for i = 1; : : : ; l. We pro
eed by indu
tionon l � 1, (5.2) being 
lear if l = 1 (with Le = 0).So let l � 2 and suppose that (5.2) holds for l � 1. Then there exists~Lx 2 N[q 12 + q� 12 ℄ for ea
h x �Ml(v) su
h thatC 0l�1(C 0l�2(� � � (C 01(Te)))) = Xx�Ml(v) ~LxC 0xand ~LMl(v) = 1. Therefore, by Theorem 4.5.3,C 0l(C 0l�1(� � � (C 01(Te)))) = C 0l� Xx�Ml(v) ~LxC 0x�= Xfx�Ml(v): Ml(x)Bxg ~LxhC 0Ml(x) + Xfz: Ml(z)Czg�(z; x)C 0zi+ Xfx�Ml(v): Ml(x)Cxg(q 12 + q� 12 )~LxC 0x;
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es 117and the result follows. �We 
an now prove the se
ond main result of this se
tion, whi
h plays afundamental role in the algorithm.Theorem 5.1.8 Given a nonnegative Coxeter system (W;S) and v 2 W , let(M1; : : : ;Ml) be a regular sequen
e for v, and A � fx 2 [e; v℄ : Lx 6= 0g, v 2 A.Then there esists E � P([l℄) su
h thatq� l2 XS2E qd(S;l)T�(S) = Xx2ALxC 0x: (5.3)Furthermore, for any y 2 A n fvg, y is maximal in A n fvg if and only ifdeg� XfS2E: �(S)=yg qd(S;l)� � l(y; v)2 (5.4)and deg� XfS2E: �(S)=xg qd(S;l)� < l(x; v)2 (5.5)for all y < x < v. If these 
onditions are satis�ed thenLy = XfS2E:�(S)=y;d(S;l)� l(y;v)2 g qd(S;l)� l(y;v)2 + XfS2E:�(S)=y;d(S;l)> l(y;v)2 g q l(y;v)2 �d(S;l)(5.6)andPy;v = XfS2E: �(S)=y; d(S;l)< l(y;v)2 g qd(S;l) � XfS2E: �(S)=y; d(S;l)> l(y;v)2 g ql(y;v)�d(S;l):(5.7)Proof. Let x 2 [e; v℄. The 
oe�
ient of Tx in the right-hand side of (5.3) isPy2A Lyq� l(y)2 Px;y. Sin
e, by our hypotheses, Ly and Px;y are Laurent poly-nomials in q 12 with nonnegative integer 
oe�
ients for all x; y � v, by Proposi-tions 5.1.6 and 5.1.7 we haveXy2ALyq� l(y)2 Px;y �Xy�vLyq� l(y)2 Px;y = q� l2 XfS2P([l℄): �(S)=xg qd(S;l);where the � is 
oe�
ientwise, and this implies (5.3).Now let y be a maximal element of A n fvg and x 2 [e; v℄. Comparing the
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oe�
ients of Tx on both sides of (5.3) we obtain thatXfS2E: �(S)=xg qd(S;l) = Xz2ALzq l(z;v)2 Px;z (5.8)= ( Lyq l(y;v)2 + Py;v; if x = y,Px;v; if y < x < v, (5.9)and (5.4) and (5.5) follow sin
e Ly 6= 0 and Ly(q) = Ly(q�1). Conversely, lety 2 A n fvg be su
h that (5.4) and (5.5) hold. Then, by (5.8),deg Xz2ALzq l(z;v)2 Px;z! < l(x; v)2for all y < x < v. Sin
e Lz and Px;z are Laurent polynomials in q 12 withnonnegative 
oe�
ients for all x; z � v, this implies that x 62 A for all y < x < v,so y is maximal in A n fvg.Finally, if y 2 A n fvg satis�es (5.4) and (5.5) then by (5.9) we haveXfS2E: �(S)=yg qd(S;l) = Lyq l(y;v)2 + Py;v;and (5.6) and (5.7) follow sin
e deg(Py;v) < l(y;v)2 and Ly 2 N[q 12 + q� 12 ℄. �Theorem 5.1.8 yields an indu
tive, entirely poset theoreti
 way of 
omputingKazhdan-Lusztig polynomials, whi
h generalizes the one given in [28℄. In fa
t,let v 2W and assume that we have already 
omputed the polynomials Px;y forall x; y < v. Take a regular sequen
e for v, and from it 
ompute, for ea
h x � v,using Propositions 5.1.6 and 5.1.7, the 
oe�
ient Px of Tx inq l(v)2 Xx�vLxC 0x:We apply Theorem 5.1.8 to the set A := fx 2 [e; v℄ : Lx 6= 0g. If deg(Px) < l(x;v)2for all x < v, then by Theorem 5.1.8 there are no maximal elements in A n fvg,namely A = fvg. Hen
e Xx�vLxC 0x = C 0vand Px = Px;v for all x � v. Otherwise, let y < v be a maximal element su
h
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es 119that deg(Py) � l(y;v)2 . Then, by (5.6),q l(y;v)2 Ly = U l(y;v)2 (Py(q)) +D l(y;v)�12 �ql(y;v)Py �1q�� :where Uk and Dk are the linear operators satisfying:Uk(qi) = ( 0; if i < k,qi; if i � k, Dk(qi) = ( qi; if i � k,0; if i > k.Sin
e, by indu
tion, we have already 
omputed Px;y for all x 2 [e; v℄ we may
ompute the di�eren
es P 0x = Px � q l(y;v)2 LyPx;y (5.10)for all x 2 [e; v℄. Clearly, P 0x is the 
oe�
ient of Tx inq l(v)2 Xx2[e;v℄nfygLxC 0x:If deg(P 0x) < l(x;v)2 for all x < v then Theorem 5.1.8 applied to A n fyg givesXx2[e;v℄nfygLxC 0x = C 0vand hen
e P 0x = Px;v for all x � v. Otherwise, let y1 < v be a maximal elementsu
h that deg(P 0y1) � l(y1;v)2 , and repeat the above pro
edure with y1 in pla
eof y (note that y1 6� y by (5.10)). After at most j[e; v℄j � 1 steps this pro
esswill stop.As an immediate 
onsequen
e of Theorem 5.1.8 we obtain the following resultwhi
h, in the 
ase that the regular sequen
e 
omes from a redu
ed expression,is 
losely related to Theorem 4.12 of [28℄.Corollary 5.1.9 Let (W;S) be a nonnegative Coxeter system, v 2 W , and(M1; : : : ;Ml) be a regular sequen
e for v. Then there exists E � P([l℄) su
h thatPu;v(q) = XfS2E:�(S)=ug qd(S;l);for all u < v.Proof. This follows immediately by taking A = fvg in Theorem 5.1.8. �



120 Chapter 5. Combinatorial poset theoreti
 formulae5.2 B-regular sequen
esOur purpose in this se
tion is to obtain a bije
tion between subsequen
es of
ertain regular sequen
es and 
ertain paths in an appropriate dire
ted graph.This bije
tion has several ni
e properties, and transforms the 
on
epts andstatisti
s used in the previous se
tion into familiar ones on paths. The mainresults of this se
tion are new even in the 
ase that the regular sequen
e 
omesfrom a redu
ed expression.Let v 2W andM := (M1; : : : ;Ml) be a regular sequen
e for v. We say thatM is B-regular ifMi(x) 6=Mi+1Mi+2 � � �Mi+k � � �Mi+2Mi+1(x)for all i 2 [l℄, k 2 [l � i℄, and for all x 2 [e; v℄ for whi
h both sides are de�ned.Note that M is B-regular if and only ifMi(x) 6=Mi�1Mi�2 � � �Mi�k � � �Mi�2Mi�1(x)for all i 2 [l℄, k 2 [i� 1℄, and for all x 2 [e; v℄ for whi
h both sides are de�ned.Let v 2 W and M := (M1; : : : ;Ml) be a B-regular sequen
e for v. TheB-graph of [e; v℄, with respe
t toM, is the dire
ted graph having [e; v℄ as vertexset and where, for any x; y 2 [e; v℄, x ! y if and only if l(x) < l(y) and thereexists i 2 [l℄ su
h thaty =MlMl�1 � � �Mi+1MiMi+1 � � �Ml�1Ml(x):If x ! y, then, by the de�nition of B-regular, there is a unique i 2 [l℄ su
hthat y = Ml � � �Mi � � �Ml(x) (for if Ml � � �Mi � � �Ml(x) = Ml � � �Mj � � �Ml(x)for some 1 � i < j � l then Mj(~x) = Mj�1 � � �Mi � � �Mj�1(~x) where ~x :=Mj � � �Ml(x), whi
h 
ontradi
ts the fa
t that M is B-regular). We thereforede�ne �(x; y) := �(y; x) := i:For example, one may easily 
he
k that the regular sequen
e in Figure 5.1 isa
tually B-regular. The 
orresponding B-graph is shown in Figure 5.2, wherewe have labeled all edges x ! y with �(x; y), and we have kept all verti
es inthe same pla
e for 
larity.Note that B-regular sequen
es always exist. In fa
t, given any redu
ed ex-
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Figure 5.1: A B-regular sequen
e of spe
ial mat
hings.pression s1s2 � � � sn of v, the sequen
es (�sn ; �sn�1 ; : : : ; �s1 ) and (�s1 ; �s2 ; : : : ; �sn)are B-regular, as it is easy to 
he
k. Therefore, the 
on
ept of a B-regular se-quen
e is a generalization of that of a redu
ed de
omposition.One of the 
ru
ial properties of the B-graphs of lower intervals of Coxetergroups is that they are always dire
ted subgraphs of the Bruhat graph. Thishinges on the following result. Re
all that we denote by T the set of re�e
tionsof a Coxeter system (W;S).Theorem 5.2.1 Let v 2 W , and M be a spe
ial mat
hing of [e; v℄. Supposex; y 2 [e; v℄ are su
h that x�1y 2 T . ThenM(x)�1M(y) 2 T: (5.11)Proof. We assume that l(x) < l(y) and we pro
eed by indu
tion on l(x; y) � 1.If l(x; y) = 1 then xC y. If either M(x)Bx or M(y)C y, then (5.11) followsimmediately from the de�nition of a spe
ial mat
hing. If M(x)C xC yCM(y)
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Figure 5.2: The B-graph 
orresponding to the B-regular sequen
e of Figure 5.1.then, by Lemma 4.2.1, M restri
ts to a spe
ial mat
hing of [M(x);M(y)℄. Butit is well known (see, e.g., [11, Lemma 6.2℄) that a Bruhat interval of rank 3 isisomorphi
 to a k-
rown for some k � 2. On the other hand, it is easy to seethat a k-
rown has no spe
ial mat
hings if k � 4, while a 3-
rown has no spe
ialmat
hingM satisfyingM(0̂) < M(1̂). Hen
e [M(x);M(y)℄ is a 2-
rown, so it isisomorphi
 to S3, and it is known (see Proposition 3.3 of [32℄) that this impliesthat M(x)�1M(y) 2 T .Suppose now that l(x; y) � 3. From our hypotheses and (the proof of)Proposition 3.3 of [32℄, we have that ne
essarily there exist a; b; 
; d 2 [x; y℄,all distin
t, su
h that l(x) < l(a) < l(
) < l(y), l(x) < l(b) < l(d) < l(y),and fx�1a; a�1
; 
�1y; x�1b; b�1d; d�1y; a�1d; b�1
g � T . Therefore, from ourindu
tion hypothesis, we 
on
lude thatfM(x)�1M(a);M(a)�1M(
);M(
)�1M(y);M(x)�1M(b);
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es 123M(b)�1M(d);M(d)�1M(y);M(a)�1M(d);M(b)�1M(
)g � T: (5.12)But (M(x)�1M(a))(M(a)�1M(
)) = (M(x)�1M(b))(M(b)�1M(
)) 6= e.Hen
e, by Proposition 4.1.1 (or by Lemma 3.1 of [32℄),Wx;a;b;
 := hM(x)�1M(a);M(a)�1M(
);M(x)�1M(b);M(b)�1M(
)iis a dihedral re�e
tion subgroup of W . Similarly,Wx;a;b;d := hM(x)�1M(a);M(a)�1M(d);M(x)�1M(b);M(b)�1M(d)iand Wb;
;d;y := hM(b)�1M(
);M(
)�1M(y);M(b)�1M(d);M(d)�1M(y)iare dihedral re�e
tion subgroups ofW . ButWx;a;b;
\Wx;a;b;d � hM(x)�1M(a);M(x)�1M(b)i. Therefore, by Remark 3.2 of [32℄, there exists a dihedral re-�e
tion subgroup W 0 of W su
h that W 0 � Wx;a;b;
 [ Wx;a;b;d. Similarly,W 0 \ Wb;
;d;y � hM(b)�1M(
);M(b)�1M(d)i, so there exists a dihedral re-�e
tion subgroup W 00 of W su
h that W 00 � W 0 [Wb;
;d;y (we 
ould also havetaken W 0 maximal so that W 00 =W 0). This implies thatfM(x);M(a);M(b);M(
);M(d);M(y)g �M(x)W 00:By Theorem 1.4 of [32℄, there is an isomorphism of dire
ted graphs � fromthe graph indu
ed on M(x)W 00 by the Bruhat graph of W to the Bruhatgraph of W 00 (
onsidered as an abstra
t Coxeter system). Hen
e, by (5.12),in the Bruhat graph of W 00 there are edges 
onne
ting �(M(x)) with �(M(a)),�(M(a)) with �(M(
)), and �(M(
)) with �(M(y)). But W 00 is a dihedral Cox-eter group, hen
e for any u;w 2 W 00 there is an edge in the Bruhat graph ofW 00 
onne
ting u with w if and only if l00(u;w) � 1 (mod 2), where l00 is thelength fun
tion of W 00 with respe
t to its set of 
anoni
al generators. Thereforel00(�(M(x)); �(M(a))) � l00(�(M(a)); �(M(
))) � l00(�(M(
)); �(M(y))) � 1(mod 2), whi
h implies that l00(�(M(x)); �(M(y))) � 1 (mod 2), and hen
e thatthere is an edge, in the Bruhat graph ofW 00, 
onne
ting �(M(x)) with �(M(y)).But � is an isomorphism of dire
ted graphs, so there is an edge in the Bruhatgraph of W 
onne
ting M(x) with M(y), and (5.11) follows. �We 
an now prove that the B-graphs of lower intervals of a Coxeter system
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 formulaeare always dire
ted subgraphs of the Bruhat graph.Corollary 5.2.2 Let v1; : : : ; vr 2W and Mi be a spe
ial mat
hing of [e; vi℄ fori = 1; : : : ; r. Let x 2 W be su
h that MrMr�1 � � �M2M1M2 � � �Mr�1Mr(x) isde�ned. Then x�1MrMr�1 � � �M2M1M2 � � �Mr�1Mr(x) 2 T: (5.13)Proof. We pro
eed by indu
tion on r � 1, the result being 
learly true ifr = 1. So assume that r � 2. From our hypothesis, it follows that the 
ompo-sition Mr�1 � � �M2M1M2 � � �Mr�1(Mr(x)) is de�ned. Hen
e, by our indu
tionhypothesis, Mr(x)�1Mr�1 � � �M2M1M2 � � �Mr�1(Mr(x)) 2 T . Therefore, byTheorem 5.2.1, x�1MrMr�1 � � �M2M1M2 � � �Mr�1Mr(x) 2 T . �An important 
onsequen
e of Corollary 5.2.2 is the following result, whi
hin the 
ase that the B-regular sequen
e (M1; : : : ;Ml) 
omes from a redu
edde
omposition is a 
onsequen
e of the Ex
hange Property.Proposition 5.2.3 Let v 2 W , (M1; : : : ;Ml) be a B-regular sequen
e for v,and y 2 [e; v℄, j 2 [l℄ be su
h that Mj(y) is de�ned. Then the following areequivalent:i) Mj(y)B y;ii) Ml � � �Mj(y) > Ml � � �Mj+1(y).Proof. Assume �rst that i) holds. We will prove, by indu
tion on k, thatMj+k � � �Mj(y) > Mj+k � � �Mj+1(y) (5.14)for k = 0; : : : ; l � j. If k = 0 then (5.14) is true by our hypothesis i). So letk � 1 and assume, by indu
tion, thata :=Mj+k�1 � � �Mj(y) > Mj+k�1 � � �Mj+1(y) := b: (5.15)Note that Mj+k(a) =Mj+k � � �Mj+1MjMj+1 � � �Mj+k(Mj+k(b)):Therefore, by Corollary 5.2.2, Mj+k(a) and Mj+k(b) are 
omparable in the
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es 125Bruhat order. Hen
e, to prove (5.14), it is enough to show thatl(Mj+k(a)) � l(Mj+k(b)): (5.16)Suppose, by 
ontradi
tion, thatl(Mj+k(a)) < l(Mj+k(b)): (5.17)From (5.15) we have that l(a) > l(b): This, together with (5.17), for
es that bCaand this implies that Mj+k(b) = a, sin
e Mj+k is a spe
ial mat
hing. ThereforeMj+k(b) =Mj+k�1 � � �Mj+1MjMj+1 � � �Mj+k�1(b)and this 
ontradi
ts the hypothesis that (M1; : : : ;Ml) is a B-regular sequen
e.This proves (5.16) and hen
e (5.14) and 
on
ludes the indu
tion step.Assume now that i) does not hold, i.e. Mj(y)Cy. ThenMj(Mj(y))BMj(y).Hen
e, by what we have just provedMl � � �MjMj(y) > Ml � � �Mj+1Mj(y)so ii) does not hold. �Note that the above proposition does not hold if (M1; : : : ;Ml) is regularbut not B-regular. For example, let W = S(5), v = 32154, (M1; : : : ;M4) =(�2; �1; �4; �1), y = e, and j = 2. Then (M1; : : : ;M4) is a regular sequen
e for vand M2(e)B e but M4M3M2(e) = 12354 6� 21354 =M4M3(e).We 
an now prove the main result of this se
tion, whi
h gives a bije
tionbetween subsequen
es of a B-regular sequen
e and 
ertain paths in the B-graphof [e; v℄. The result is new even in the 
ase that the B-regular sequen
e 
omesfrom a redu
ed de
omposition. Re
all the de�nition of �, d1(S; l) and d2(S)from Se
tion 5.1.Theorem 5.2.4 Let v 2 W and (M1; : : : ;Ml) be a B-regular sequen
e forv. Then there is a bije
tion between subsets S of [l℄ and (undire
ted) paths� = (x0; x1; : : : ; xs) in the B-graph of [e; v℄ su
h that x0 = v and �(x0; x1) <�(x1; x2) < � � � < �(xs�1; xs). Furthermore:i) l(�) = l� jSj;ii) xs = �(S);
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 formulaeiii) d1(S; l) = jfi 2 [s℄ : xi�1 < xigj;iv) d2(S) = 12 (l � l(xs)� l(�)).Proof. For S = fi1; : : : ; ikg< � [l℄ let fj1; : : : ; jsg< := [l℄ n S andxi := Rji � � �Rj2Rj1(v)for i = 0; : : : ; s, where Ri := Ml � � �Mi � � �Ml for i 2 [l℄. Then xi = Rji(xi�1)and hen
e �(xi�1; xi) = ji for i 2 [s℄. Clearly s = l � k andxi = Rji � � �Rj2Rj1Ml � � �M1(e)= Ml � � �
Mji � � �
Mj2 � � �
Mj1 � � �M1(e)= Ml � � �Mji+1(y);where y = �(S \ [ji � 1℄), for ea
h i 2 [s℄. Hen
e xs = �(S) and, for i 2 [s℄,xi�1 < xi if and only ifRji(xi) =Ml � � �Mji(y) < Ml � � �Mji+1(y) = xiwhi
h, by Proposition 5.2.3, happens if and only ifMji(y)C ynamely if and only if "ji(S) = 1. This proves iii).Finally, by ii),l(xs) = k � 2jfa 2 [k℄ : MiaMia�1 � � �Mi1(e)CMia�1 � � �Mi1(e)gj= k � 2 Xa2[k℄ "ia(S)= k � 2d2(S):It is 
lear that this map S 7! (x0; x1; : : : ; xs) is a bije
tion. �Combining Theorems 5.2.4 and 5.1.4 we obtain the following result.Corollary 5.2.5 Let v 2 W , and (M1; : : : ;Ml) be a B-regular sequen
e for v.Then, for all u � v, eRu;v(q) =X� ql(�)
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es 127where � runs over all the dire
ted paths u = xs ! : : :! x2 ! x1 ! x0 = v inthe B-graph of [e; v℄ su
h that �(x0; x1) < �(x1; x2) < : : : < �(xs�1; xs). �In the 
ase that the B-regular sequen
e 
omes from a redu
ed expressionCorollary 5.2.5 is 
losely related to (but not implied by) Corollary 3.4 of [33℄.We illustrate Corollary 5.2.5 with an example. Consider the B-regular se-quen
e (M1; : : : ;M5) illustrated in Figure 5.1. Then by Corollary 5.2.5 we 
an�read o�� from the 
orresponding B-graph (Figure 5.2) that, for example,eRe;v(q) = q5 + 2q3 + q;
orresponding to the dire
ted paths from e to v having sequen
es of labels(5; 4; 3; 2; 1), (5; 3; 2), (4; 3; 1) and (3).Combining Theorem 5.2.4 with Corollary 5.1.9 we obtain the following result,whi
h appears to be new even in the 
ase that the B-regular sequen
e 
omesfrom a redu
ed de
omposition.Corollary 5.2.6 Let (W;S) be a nonnegative Coxeter system, v 2 W , and(M1; : : : ;Ml) be a B-regular sequen
e for v. Then there is a subset E of the setof (undire
ted) paths � = (x0; x1; : : : ; xl(�)) in the B-graph of [e; v℄ satisfyingx0 = v and �(x0; x1) < �(x1; x2) < � � � < �(xl(�)�1; xl(�)), su
h thatPu;v(q) = Xf�2E: xl(�)=ug q 12 (l(u;v)+l(�)�2d(�))for all u � v, where d(�) = jfi 2 [l(�)℄ : xi�1 > xigj. �Note that the subset E 
an be determined using the algorithm in Se
tion 5.1and Theorem 5.1.8.5.3 R-regular sequen
esIn this se
tion we generalize to a 
ombinatorially invariant setting what is prob-ably the most expli
it non-re
ursive formula known for Kazhdan-Lusztig poly-nomials whi
h holds in 
omplete generality, namely Theorem 7.3 of [14℄. Inthe following two subse
tions we introdu
e the preliminary results that will beneeded in the third subse
tion.
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 formulae5.3.1 Re�e
tion orderingsLet (G;S) be any Coxeter system. Following [33℄ we say that a total ordering �of the set of re�e
tions T ofG is a re�e
tion ordering if, for any dihedral re�e
tionsubgroup (G0; fa; bg), where a; b are the 
anoni
al generators of G0, we have thateither a � aba � ababa � � � � � babab � bab � b or b � bab � � � � � aba � a. It
an be proved that su
h orderings always exist (see [33℄).Let � be a re�e
tion ordering, and s 2 S. We de�ne a total ordering �son T as follows. For t1; t2 2 T we set t1 �s t2 if and only if either one of thefollowing 
onditions apply:1. t1; t2 � s and t1 � t2;2. t1; t2 � s and st1s � st2s;3. t1 � s � t2;4. t2 = s.Similarly, we de�ne�s by letting t1 �s t2 if and only if either one of the following
onditions is satis�ed:1. t1; t2 � s and st1s � st2s;2. t1; t2 � s and t1 � t2;3. t1 � s � t2;4. t1 = s.It 
an be proved (see Poposition 2.5 of [33℄) that these orders are well-de�nedand that they are still re�e
tion orderings. Note that(�s)s =�s : (5.18)5.3.2 Chains and latti
e pathsFor j 2 Q we de�ne an operator Lj : C [q℄ ! C [q℄ by lettingLj�Xi�0 aiqi� := X0�i�j aiqi:
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es 129Following [14℄, given a 
hain C = x0 < x1 < � � � < xn in W of length l(C) := n,we de�ne Rx0;:::;xn(q) := Rx0;x1(q)L d�12 (Rx1;:::;xn(q));where d := l(x1; xn), if n � 2 andRx0;:::;xn(q) := Rx0;xn(q);if n = 1, where the right-hand side is the usual R-polynomial. The polynomialRx0;:::;xn(q) is 
alled the R-polynomial of the 
hain x0 < x1 < � � � < xn. Thefollowing result appeared in [14, Theorem 4.1℄ and is a non-re
ursive formulafor Kazhdan-Lusztig polynomials in terms of the R-polynomials of a 
hain.Theorem 5.3.1 Let W be a Coxeter group and u; v 2 W , u � v. ThenPu;v(q) � ql(u;v)Pu;v(q�1) = XC2C(u;v)(�1)l(C)RC(q);where C(u; v) is the set of all 
hains from u to v.Re
all that a 
omposition of n 2 P is a sequen
e (�1; : : : ; �s) (for some s 2P) of positive integers su
h that �1 + : : : + �s = n. When writing 
ompo-sitions we will sometimes omit to write the parentheses (i.e., we will write�1; : : : ; �s instead of (�1; : : : ; �s)). For n 2 P we let Cn be the set of all
ompositions of n and C := Sn�1 Cn. Given � 2 C we denote by l(�) thenumber of parts of �, by �i, for i = 1; : : : l(�), the i-th part of � (so that� = (�1; �2; : : : ; �l(�))), and we let j�j := Pl(�)i=1 �i, � := (�2; �3; : : : ; �l(�)) (ifl(�) � 2), �� := (�l(�); : : : ; �2; �1), T (�) := f�r; �r + �r�1; : : : ; �r + : : : + �2gwhere r := l(�). Given (�1; : : : ; �s); (�1; : : : �t) 2 Cn we say that (�1; : : : ; �s)re�nes (�1; : : : �t) if there exist 1 � i1 < i2 < � � � < it�1 � s su
h thatPikj=ik�1+1 �j = �k for k = 1; : : : ; t (where i0 := 0, it := s). We then write(�1; : : : ; �s) �
 (�1; : : : �t). It is easy to see that the map � 7! T (�) is an iso-morphism from (Cn;�
) to the Boolean algebra of subsets of [n� 1℄ ordered byreverse in
lusion.Let n 2 N. By a latti
e path of length n we mean a fun
tion � : [0; n℄ ! Zsu
h that �(0) = 0 and j�(i)� �(i� 1)j = 1



130 Chapter 5. Combinatorial poset theoreti
 formulaefor all i 2 [n℄. Given su
h a latti
e path � we letN(�) := fi 2 [n� 1℄ : �(i) < 0g;d+(�) := jfi 2 [0; n� 1℄ : �(i+ 1)� �(i) = 1gj;l(�) := n, and ��0 := l(�) � 1 � jN(�)j. We 
all N(�) the negative set of �,and l(�) the length of �. Note that n =2 N(�) and thatd+(�) = �(n) + n2 : (5.19)Let L(n) denote the set of all latti
e paths of length n. Given S � [n�1℄ we letH(S; n) := f� 2 L(n) : N(�) � Sg;and E(S; n) := f� 2 L(n) : N(�) = Sg:For � 2 Cn we de�ne two polynomials 	�(q);��(q) 2 Z[q℄ by letting	�(q) := (�1)n X�2H(T (�);n)(�q)d+(�); (5.20)and ��(q) := (�1)n�l(�) X�2E(T (�);n)(�q)d+(�):Note that the de�nitions imply that	�(q) = X��
�(�1)l(�)��(q):Hen
e, by the Prin
iple of In
lusion-Ex
lusion,��(q) = X��
�(�1)l(�)	�(q): (5.21)The next result gives the R-polynomial of a 
hain in terms of the usual ~R-polynomials and its proof 
an be found in [14, Proposition 7.1℄.
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es 131Proposition 5.3.2 Let x0 < x1 < : : : < xn be a 
hain in W . ThenRx0;:::;xn(q) = X�2Pn q l(x0;xn)�j�j2 	�(q) nYr=1[q�r ℄( eRxr�1;xr): (5.22)5.3.3 Poset theoreti
 formulaLet v 2 W , and M := (M1; : : : ;Ml) be a regular sequen
e for v. We denoteby PM the set of palindromes in the alphabet fM1; : : : ;Mlg, i.e. words of theform Mi1 � � �Mik�1MikMik�1 � � �Mi1 with i1; : : : ; ik 2 [l℄. We say that M is are�e
tion regular sequen
e, or simply an R-regular sequen
e, for v, if:i) for p1; p2 2 PM, if p1(u0) = p2(u0) for some u0 2 [e; v℄ then p1(u) = p2(u)for all u 2 [e; v℄ for whi
h both sides are de�ned;ii) for p1; p2; : : : ; pn 2 PM, if pi and pi+1 
oin
ide on a point, for ea
h i =1; : : : ; n� 1, then p1 and pn 
oin
ide where they are both de�ned;iii) M admits a re�e
tion labeling.We now de�ne re�e
tion labelings. De�ne an equivalen
e relation � on PM byletting p1 � p2 if there exists u0 2 [e; v℄ su
h that p1(u0) = p2(u0) and taking thetransitive 
losure. Note that this is stronger than requiring that p1(u) = p2(u)for all u 2 [e; v℄ for whi
h both sides are de�ned. We denote by RM := PM= �the quotient set. If p 2 PM we let p be the 
orresponding 
lass in RM. Notethat, for ea
h i; j 2 [l℄, Mi = Mj if and only if Mi(e) = Mj(e). Therefore, byLemma 5.1.1, we may identify fMi : i 2 [l℄g with the set of atoms of [e; v℄. Wesay that an element r 2 RM is de�ned on some u 2 [e; v℄ if p(u) is de�ned forsome p 2 r. In this 
ase we write r(u) := p(u). Now let (W 0; S0) be anotherCoxeter system and T 0 be its set of re�e
tions. A re�e
tion labeling of RM in(W 0; S0) is a map L : RM ! T 0 su
h that:a) fL(Mi) : i 2 [l℄g = S0;b) L(Mi1 � � �Mik � � �Mi1) = L(Mi1) � � �L(Mik) � � �L(Mi1) for all i1; : : : ; ik 2[l℄;
) If r1; r2 2 RM, r1 6= r2, are both de�ned on some u 2 [e; v℄ then L(r1) 6=L(r2):In parti
ular jS0j equals the number of atoms of [e; v℄.
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 formulaeIt is not hard to see that R-regular sequen
es always exist. In fa
t, if v =s1 � � � sl is a redu
ed expression for v then M := (�1; : : : ; �l) is 
learly a regularsequen
e for v satisfying i) and ii). If we denote by W 0 the paraboli
 subgroupofW generated by fsi : i 2 [l℄g and by T 0 its set of re�e
tions, then the map L :PM �! T 0 de�ned by �i1 � � � �ik � � � �i1 7! si1 � � � sik � � � si1 
learly fa
tors throughRM to a re�e
tion labeling. Similarly for (�l; : : : ; �1). Thus, the 
on
ept of anR-regular sequen
e is a generalization of that of a redu
ed de
omposition.Although this is not obvious from the de�nition, an R-regular sequen
e isalso B-regular.Proposition 5.3.3 Let v 2 W and M be an R-regular sequen
e for v. ThenM is B-regular.Proof. Let M := (M1; : : : ;Ml) and �x i 2 [l℄. We will show thatMi(x) 6=Mi�1 � � �Mi�k � � �Mi�1(x)for all k 2 [i�1℄ and all x 2 [e; v℄ for whi
h both sides are de�ned, and the resultwill follow from the remarks following the de�nition of a B-regular sequen
e inSe
tion 5.2.Suppose, by 
ontradi
tion, that there are x 2 [e; v℄ and k 2 [i � 1℄ su
hthat Mi(x) =Mi�1 � � �Mi�k � � �Mi�1(x). Sin
e M is R-regular this implies, by
ondition i), that Mi(y) =Mi�1 � � �Mi�k � � �Mi�1(y) for all y 2 [e; v℄ for whi
hboth sides are de�ned. Let (v0; : : : ; vl) be the regular 
hain asso
iated to M.Then, in parti
ular,vi =Mi(vi�1) =Mi�1 � � �Mi�k � � �Mi�1(vi�1) =Mi�1 � � �Mi�k+1(vi�k�1):Thereforei = l(vi) = l(Mi�1 � � �Mi�k+1(vi�k�1)) � l(vi�k�1) + k � 1 = i� 2;whi
h is a 
ontradi
tion. �Note that the 
onverse of the above proposition is not true. For example, letW = S(4) and v = 3421. Then it is easy to 
he
k that M := (�2; �3; �2; �1; �2)is a B-regular sequen
e for v. However,M is not R-regular sin
e �2(e) = �2(e)but �2(1243) 6= �2(1243), so 
ondition i) does not hold.If L : RM ! T is a re�e
tion labeling and � is a re�e
tion ordering on Twe write, for brevity, �i:=�L(Mi) and �i:=�L(Mi).
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es 133Let w 2W ,M an R-regular sequen
e for v, and L : RM ! T 0 be a re�e
tionlabeling. We de�ne a labeled dire
ted graph, that we 
all the R-graph of [e; v℄with respe
t toM, as follows. The R-graph has [e; v℄ as vertex set and, for anyx; y 2 [e; v℄, x r�! y if and only if l(y) > l(x) and y = r(x), for some r 2 RM.Note that, by Corollary 5.2.2, the R-graph is a dire
ted subgraph of the Bruhatgraph.If � = (x0 r1�! x1 r2�! � � � rk�! xk) is a path in the R-graph we writeE(�) := fr1; : : : ; rkg and if � is a re�e
tion ordering on T 0 we letD(�; L;�) := fi 2 [k � 1℄ : L(ri) � L(ri+1)g: (5.23)Finally, we de�ne an element R� in the in
iden
e algebra of [e; v℄ by lettingR�(x; y) := Xf�2B(x;y):D(�;L;�)=;gql(�)where B(x; y) denotes the set of all paths in the R-graph from x to y.We 
an now prove the �rst main result of this se
tion. It is a �global version�of Corollary 5.2.5 and generalizes Corollary 3.4 of [33℄.Theorem 5.3.4 Let v 2 W , M = (M1; : : : ;Ml) be an R-regular sequen
e forv, L : RM ! T be a re�e
tion labeling and � a re�e
tion ordering on T . TheneRx;y(q) = R�(x; y)for all x � y � v.Proof. We pro
eed by indu
tion on l(y) the statement being trivial for l(y) = 0.Assume that l(y) > 0. By Lemma 5.1.1 there is i 2 [l℄ su
h that Mi(y)C y.Let, for brevity, M :=Mi. For all x0; y0 � y we letf�(x0; y0) := X�2Bi(x0;y0) ql(�)and g�(x0; y0) := X�2B0i(x0;y0) ql(�);where Bi(x0; y0) := f� 2 B(x0; y0) : L(M) � L(E(�)) and D(�; L;�) = ;gand B0i(x0; y0) := f� 2 B(x0; y0) : L(M) � L(E(�)) and D(�; L;�0) = ;g,where �0:=�L(M).
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 formulaeWe 
laim thatf�(x; y) = ( g�(Mx;My); if MxC x;g�(Mx;My) + qg�(x;My); otherwise; (5.24)andg�(x; y) = ( f�(Mx;My) + q (g�(x;My)� f�(x;My)) ; if MxC x;f�(Mx;My) + qg�(x;My); otherwise;(5.25)where, for all x � y, we write Mx instead of M(x).We prove only the 
ases Mx C x in equations (5.24) and (5.25), the 
asesMxB x being similar. So suppose MxC x.Let � = (x0 r1�! x1 r2�! � � � rk�! xk) 2 Bi(x; y). Then M =2 E(�) and thepath �0 = (Mx0 rM1�! Mx1 rM2�! � � � rMk�! Mxk), where rM := MpM for some(any) p 2 r belongs to B0i(Mx;My). Conversely, every path in B0i(Mx;My)arises in this way as it 
annot have labels M sin
e M(y) C y. This proves the
ase MxC x of (5.24).Now let � = (x0 r1�! x1 r2�! � � � rk�! xk) 2 B0i(x; y). If M 2 E(�) thenne
essarily M = rk. Hen
e �0 = (x0 r1�! x1 r2�! � � � rk�1�! xk�1) 2 B0i(x;My).Furthermore, every path in B0i(x;My) 
annot have M as a label and hen
earises in this way from a path � 2 B0i(x; y) su
h that M 2 E(�). SoXf�2B0i(x;y) :M2E(�)g ql(�) = qg�(x;My): (5.26)If M =2 E(�) then �0 = (Mx0 rM1�! Mx1 rM2�! � � � rMk�! Mxk) 2 Bi(Mx;My).Moreover, any path �0 2 Bi(Mx;My) with M =2 E(�0) arises in this way.Hen
e Xf�2B0i(x;y):M=2E(�)g ql(�) = f�(Mx;My)� Xf�2Bi(Mx;My):M2E(�)g ql(�): (5.27)Now let � = (x0 r1�! x1 r2�! � � � rk�! xk) 2 Bi(Mx;My) be su
h that M 2E(�). Then ne
essarily M = r1 and hen
e �00 = (x1 r2�! x2 r3�! � � � rk�! xk) 2Bi(x;My). Furthermore, every path in Bi(x;My) 
annot haveM as a label andhen
e arises in this way from a path � 2 Bi(Mx;My) su
h that M 2 E(�).
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es 135Therefore Xf�2Bi(Mx;My):M2E(�)g ql(�) = qf�(x;My)and this, together with (5.26) and (5.27), 
on
ludes the proof of the 
aseMxCxof (5.25).Now let h�(x; y) := Xf�2B(x;y):L(E(�))�L(M);D(�;L;�)=;g ql(�):Then it is 
lear that R� = h�f� and R�0 = h�g� (5.28)in the in
iden
e algebra of [e; y℄. We 
laim that f�(x; y) = g�(x; y) for all x � y.In fa
t, by (5.28) and our indu
tion hypothesis we have thatf�(z;My) = (h�1R�)(z;My) = (h�1R�0)(z;My) = g�(z;My) (5.29)for all z �My and the 
laim follows by (5.24) and (5.25).Therefore, by (5.28), we haveR�(x; y) = R�0(x; y)and, sin
e (�i)i =�i R�i(x; y) = R�0(x; y):Now noti
e that f�i(x; z) = R�i(x; z) for all x; z � y (sin
e L(M i) �i L(E(�))is an empty 
ondition) and hen
e, by (5.24) and (5.29)R�i(x; y) = ( R�i(Mx;My); if MxC x;R�i(Mx;My) + qR�i(x;My); otherwise;and the thesis follows by Corollary 0.5.3 and our indu
tion hypothesis. �Now �x v 2 W , an R-regular sequen
e M for v, a re�e
tion labeling L :RM ! T 0 and a re�e
tion ordering � on T 0. Let � 2 B(x; y), where x �y � v. We de�ne the des
ent 
omposition of � with respe
t to � to be theunique 
omposition C(�; L;�) := (b1; : : : ; bj) su
h that b1+ : : :+ bj = l(�) and
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 formulaeD(�; L;�) = fb1; b1 + b2; : : : ; b1 + : : :+ bj�1g.For x; y � v, and � 2 C, we let
�(x; y) := jf� 2 B(x; y) : l(�) = j�j and C(�; L;�) �
 �gj; (5.30)and b�(x; y) := jf� 2 B(x; y) : l(�) = j�j and C(�; L;�) = �gj: (5.31)Note that these de�nitions imply that
�(x; y) = X��
� b�(x; y) (5.32)for all x; y � v and � 2 C, and that
�(x; y) = b�(x; y) = jf� 2 B(x; y) : l(�) = j�j and D(�; L;�) = ;gj (5.33)if l(�) = 1.The proof of the following result is analogous to that of Proposition 4.4of [13℄ and is therefore omitted.Proposition 5.3.5 Let x � y � v, and � 2 C. Then
�(x; y) = X(x0;:::;xr)2Cr(x;y) rYj=1[q�j ℄( eRxj�1;xj )where Cr(x; y) denotes the set of all 
hains of length r from x to y, and r :=l(�) �.We 
an now state and prove the se
ond main result of this se
tion, whi
hgeneralizes the main result of [14℄ (Theorem 7.2). Re
all the de�nition of thepolynomials 	�(q) and ��(q) from Subse
tion 5.3.2.Theorem 5.3.6 Let v 2 W , M be an R-regular sequen
e for v, L : RM ! T 0be a re�e
tion labeling and � be a re�e
tion ordering on T 0. Then, for allx � y � vPx;y(q)� ql(x;y) Px;y �1q� = X�2B(x;y) q l(x;y)�l(�)2 �C(�;L;�)(q): (5.34)
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es 137Proof. From Theorem 5.3.1 and Propositions 5.3.2 and 5.3.5 we have thatPx;y(q)� ql(x;y)Px;y �1q� = XC2C(x;y)(�1)l(C)RC(q)= X�2C(�1)l(�) q l(x;y)�j�j2 	�(q) 
�(x; y):On the other hand, from (5.32) and (5.21) we obtainX�2Cn(�1)l(�)	�(q) 
�(x; y) = X�2Cn(�1)l(�)	�(q) X��
� b�(x; y)= X�2Cn b�(x; y) X��
�(�1)l(�)	�(q)= X�2Cn b�(x; y)��(q);for all n 2 P. Therefore we 
on
lude thatPx;y(q)� ql(x;y)Px;y �1q� = X�2C q l(x;y)�j�j2 ��(q) b�(x; y);whi
h, by (5.31), is equivalent to (5.34). �In the same way as Theorem 7.3 is dedu
ed from Theorem 7.2 in [14℄ oneobtains the following result from Theorem 5.3.6 . Given n 2 Z and A � Z welet n � A := fn � a : a 2 Ag. Re
all our notations 
on
erning latti
e pathsfrom Subse
tion 5.3.2..Corollary 5.3.7 Let v 2 W , M be an R-regular sequen
e for v, L : RM ! T 0be a re�e
tion labeling and � be a re�e
tion ordering on T 0. Then, for allx � y � v, Px;y(q) = X(�;�)(�1)��0+d+(�)q l(x;y)+�(l(�))2where the sum is over all pairs (�;�) su
h that � is a latti
e path, � 2 B(x; y),l(�) = l(�), N(�) = l(�)�D(�; L;�), and �(l(�)) < 0. �





Chapter 6Spe
ial mat
hings of S(n)form a Coxeter groupThe proof of Lusztig's 
onje
ture for lower Bruhat intervals (Corollary 4.4.8)uses the fundamental 
on
ept of spe
ial mat
hings of a partially ordered set,and follows from the study of all possible 
ommutation relations between twosu
h mat
hings. In this 
hapter we study with mu
h more detail the relationsbetween spe
ial mat
hings of intervals of the form [e; v℄, where v 2 S(n). In fa
t,the main result of this 
hapter (Theorem 6.2.1) is that all the possible relationsbetween spe
ial mat
hings are 
onsequen
es of the 
ommutation relations amongthem. Or, whi
h is the same, it states that the group 
Wv generated by the setSv of all the spe
ial mat
hings of a permutation v is again a Coxeter group withSv as set of Coxeter generators. Furthermore the Coxeter system (
Wv ; Sv) isisomorphi
 to a dire
t produ
t of symmetri
 groups.6.1 The 
ommutation graphWe start this se
tion with two te
hni
al lemmas that will later be needed.Lemma 6.1.1 is in the spirit of Lemma 1.1.1.Lemma 6.1.1 Let (W;S) be any Coxeter system and let J;K � S with J \K = ;. Suppose that w = wjwk, with wj 2 WJ and wk 2 WK , and thatsj 2 J \DR(w). Then sj 2 DR(wj) and sj 
ommutes with every letter in wk.139



140 Chapter 6. Spe
ial mat
hings of S(n) form a Coxeter groupProof. We pro
eed by indu
tion on l(wk), the assertion being 
lear if l(wk) = 0.So suppose l(wk) � 1 and let s 2 DR(wk). By the Lifting Lemma (Lemma 0.3.4),sj 2 DR(ws), and we 
an 
onsider the fa
torization ws = wj wks, with l(wks) <l(wk). So, by indu
tion hypothesis, sj 
ommutes with every letter in wks,namely with every letter in wk ex
ept at most s. Suppose, by 
ontradi
tion,that sj does not 
ommute with s. By Lemma 0.3.5, w admits a redu
ed expres-sion of the form w0�s;sj where �s;sj has more than two letters. Hen
e s � wsand this for
es s � wks; but this is a 
ontradi
tion be
ause we have alreadyproved that sj 
ommutes with every letter in wks. �Clearly, a dual version of Lemma 6.1.1 holds.Lemma 6.1.2 Let (W;S) be any Coxeter system, and let w 2 W and K � S.Suppose that s 2 DL(w) but s =2 K. Then s 2 DL(Kw).Proof. Re
all the fa
torization of Proposition 0.3.7: w = wK Kw. We pro
eedby indu
tion on l(wK), the assertion being 
lear if l(wK) = 0.Suppose l(wK) � 1 and let s0 2 DL(wK). By the Lifting Lemma (Lemma 0.3.4),s 2 DL(s0w), and we 
an 
onsider the fa
torization s0w = s0wK Kw, withl(s0wK) < l(wK). So, by indu
tion hypothesis, s 2 DL(Kv). �Clearly, a dual version of Lemma 6.1.2 holds.We also need the following result about the length of dihedral intervals inthe symmetri
 group.Proposition 6.1.3 Let u; v 2 S(n), u � v, be su
h that the interval [u; v℄ isdihedral. Then l(u; v) � 3.Proof. By Lemma 4.1.1 it follows that the group W 0 generated by the set ofre�e
tions fab�1 : u � a C b � vg is a dihedral re�e
tion subgroup. By The-orem 1.4 of [32℄, it follows that the interval [u; v℄ is isomorphi
, as a partiallyordered set, to a subset of W 0. The statement follows sin
e dihedral re�e
tionssubgroups of the symmetri
 group are of length at most 3. �Remark. In general, Proposition 6.1.3 
an be false even if all the entries ofthe Coxeter matrix are � 3. A 
ounterexample 
an be found even in eA2, theCoxeter group of Coxeter generators s1, s2, s3 with m(si; sj) = 3 for all i 6= j.In fa
t, for example, [s1s2s3; s2s1s3s2s1s3s2℄ is a dihedral interval of length 4.



6.1 The 
ommutation graph 141From now on we 
all a dihedral interval of length 1, 2 and 3 respe
tively asegment, a square and a hexagon.Proposition 6.1.4 Let v 2 S(n), M and N be two spe
ial mat
hings of v, andlet u0 � v.1. If hM;Ni(u0) is a hexagon then hM;Ni(u) is a hexagon for all u � v.2. If hM;Ni(u0) is either a segment or a square then hM;Ni(u) is a segmentor a square for all u � v.Proof. A
tually 1. and 2. are equivalent by Lemma 4.2.2 and Proposition 6.1.3.Let us prove 1.With no la
k of generality, we 
an suppose that u0 is the top element of anorbit. We �rst prove the statement for u � u0 by indu
tion on l(u0). Supposethat there exists u1 C u0, u1 =2 fM(u0); N(u0)g, su
h that u � u1. Then,by Proposition 4.2.3, hM;Ni(u1) is a hexagon and we 
an 
on
lude by ourindu
tion hypothesis. If su
h u1 does not exist, by Corollary 4.1.3, [u; v℄ is adihedral interval 
ontaining M(u0) and N(u0). Then, by Theorem 4.1.2 andProposition 6.1.3, u 2 hM;Ni(u0) and we are done. In parti
ular we have thathM;Ni(e) is a hexagon. An upside-down argument with u0 = e shows thathM;Ni(u) is a hexagon for all u � e and the proof is 
omplete. �Now we 
an 
on
lude that the 
ommutation rules of spe
ial mat
hings reallylook like the Coxeter relations for the symmetri
 group.Corollary 6.1.5 Let v 2 S(n), M and N be two spe
ial mat
hings of v. Theneither MN = NM or MNM = NMN .Proof. It is straightforward by Proposition 6.1.4. �Now we fo
us our attention to non-
ommuting pairs of spe
ial mat
hings.To see that two spe
ial mat
hings M and N do not 
ommute it is enough to
he
k that MN(e) 6= NM(e), by Proposition 6.1.4. It follows that any spe
ialmat
hing does not 
ommute with at most 4 other spe
ial mat
hings.spe
ial mat
hings does not 
ommute with�i �i�1; �i+1; li�1; ri+1�i �i�1; �i+1; ri�1; li+1li ri�1; ri+1; �i+1; �i�1ri li�1; li+1; �i�1; �i+1



142 Chapter 6. Spe
ial mat
hings of S(n) form a Coxeter groupWe shall see that the situation is a
tually mu
h simpler. We de�ne the 
ommu-tation graph of the spe
ial mat
hings of v to be the graph G = (V;E) where Vis the set of spe
ial mat
hings of v and E is the set of non-
ommuting pairs ofspe
ial mat
hings. For what we have proved so far, if v 2 S(7), its 
ommutationgraph 
an be obtained from the graph in Figure 6.1 by deleting some verti
esand the 
orresponding adja
ent edges. Note that the spe
ial mat
hings l1, l6,r1, and r6 do not appear in this graph sin
e they are ne
essarily also of type �or �.PSfrag repla
ements
�1�2�3�4�5�6

�1�2�3�4�5�6
l2l3 l4l5

r2 r3r4 r5
Figure 6.1: Spe
ial mat
hings in S(7)Lemma 6.1.6 Let v 2 S(n).1. If li; ri+1 are both spe
ial mat
hings of v, then v = v0sisi+1si, with v0 2S(n)Snfi;i+1g.2. If ri; li+1 are spe
ial mat
hings of v, then v = sisi+1siv00, with v00 2S(n)Snfi;i+1g.Proof. We prove only 1. be
ause 2. is its dual statement.Let u 2 [e; v℄ be su
h that li(u) > u and ri+1(u) > u. We show that si+1 � u.Let J := [i℄ and K := [i; n � 1℄, and de
ompose u = uJ Ju, where, by Corol-lary 0.7.5, Ju 2 S(n)K . We have si+1si+2 � Ju, otherwise sisi+1si+2 � li(u) �



6.1 The 
ommutation graph 143v whi
h 
ontradi
ts 2. of Corollary 0.7.4. Hen
e, if si+1 � Ju, we have thatJu = u1si+1u2 with u1 2 S(n)[i+2;n�1℄ and u2 2 S(n)fig. So u = uJ Ju =uJu1si+1u2 and hen
e, by Corollary 0.7.5, ri+1(u) = u1si+1uJsi+1u2 whi
h im-plies sisi�1 � uJ , by Corollary 0.7.4. Sin
e li(u) B u this for
es si � uJ andhen
e ri+1(u) < u.A symmetri
 argument shows that si � u.Note that, sin
e hli; ri+1i(e) is a hexagon all the orbits of the group hli; ri+1iare hexagons by Proposition 6.1.4. Suppose u is the bottom element of thehexagon 
ontaining v so that v = liri+1li(u). We know that u = u1u2 withu1 2 S(n)[i�1℄ and u2 2 S(n)[i+2;n�1℄. Thenv = liri+1li(u) = liri+1(u1siu2) = li(u2si+1u1si)= u1siu2si+1si = u1u2sisi+1siand we are done. �Theorem 6.1.7 Let v 2 S(n).1. If li and ri+1 are two spe
ial mat
hings of v thenli ri+1d dis a 
onne
ted 
omponent of the 
ommutation graph of the spe
ial mat
h-ings of v.2. If ri and li+1 are two spe
ial mat
hings of v thenri li+1d dis a 
onne
ted 
omponent of the 
ommutation graph of the spe
ial mat
h-ings of v.Proof. We prove only 1. be
ause 2. is its dual statement.Figure 6.2 shows all possible neighbors of the spe
ial mat
hings li and ri+1 inthe 
ommutation graph (see Figure 6.1).Re
all that, by Lemma 6.1.6, v = v0sisi+1si, with v0 2 S(n)Snfi;i+1g.If �i+1 is a spe
ial mat
hing of v then, by Lemma 6.1.1, si+2 � v whi
h for
es



144 Chapter 6. Spe
ial mat
hings of S(n) form a Coxeter groupPSfrag repla
ements �i+1
�ili li+2�i+2ri�1 ri+1�i�1Figure 6.2: Neighbors of li and ri+1�i+1 = ri+1. If �i is a spe
ial mat
hing of v then, by Lemma 6.1.1, si�1 � vwhi
h implies �i = li.Again by Lemma 6.1.1, we have that �i�1 and �i+2 are not spe
ial mat
hingsof v.Let us 
he
k that li+2 and ri�1 are not spe
ial mat
hings of v. We show it forli+2, the same argument being valid also for ri�1. Suppose, by 
ontradi
tion,that li+2 is a spe
ial mat
hing. By 2. of Lemma 6.1.6 we have that v =v0si+1si+2si+1 and v = si+1si+2si+1v00, with v0; v00 2 S(n)Snfi+1;i+2g. Butthese two de
ompositions of v are in
ompatible, sin
e from the se
ond we havei+ 1 2 DL(v) whi
h for
es, from the �rst de
omposition, si+2 � v0. But this isa 
ontradi
tion with the se
ond one. �We go on in our analysis of the 
ommutation graph by showing anotherforbidden 
on�guration.Theorem 6.1.8 Let v 2 S(n).1. The 
on�guration �j�1 rj �j+1d d dis forbidden in the 
ommutation graph of the spe
ial mat
hings of v.2. The 
on�guration �j�1 lj �j+1d d dis forbidden in the 
ommutation graph the spe
ial mat
hings of v.



6.1 The 
ommutation graph 145Proof. We prove only 1. be
ause 2. is its dual statement.By 
ontradi
tion, suppose that �j�1; rj and �j+1 are all spe
ial mat
hings ofv. Let J = [j℄ and K = [j; n � 1℄, and de
ompose v = vK Kv. We 
laim thatsj � Kv. In fa
t Kvsj+1 =2 KW sin
e KW \ [e; v℄ � WJ \ [e; v℄ by 2. ofCorollary 0.7.5. Then, by the de�nition of KW , there exists k 2 K su
h thatk 2 DL(Kvsj+1). Ne
essarily k = j or k = j + 1 as Kv 2WJ .If k = j we have ���������sj Kvsj+1Kvsj+1 Kv sj Kv� � � �
By the lifting lemma (Lemma 0.3.4) we should have Kvsj+1 = sj Kv. Butthis is not possible sin
e sj+1 � sj Kv.If k = j + 1 we have that ���������sj+1 Kvsj+1Kvsj+1 Kv sj+1 Kv� � � �and hen
e, by the lifting lemma, Kvsj+1 = sj+1 Kv whi
h implies that sj � Kvby Lemma 6.1.1. So the 
laim is proved.A similar argument applied to v�1 and to J , together with Corollary 0.7.5,provides that either sj � vK or vK = v0sj with sj � v0. But sin
e rj is a spe
ialmat
hing of v we must be in the last situation. So we havev = v0sj Kvwith v0 2 W[j+1;n�1℄ and Kv 2 W[j�1℄. All these 
onditions are in 
ontradi
tionwith Lemma 6.1.1 (e.g. apply Lemma 6.1.1 to j + 1 2 DR(v)), and the proof is
omplete. �The next result shows us how a 
onne
ted 
omponent of the 
ommutationgraph looks like.Theorem 6.1.9 Let v 2 S(n). Let �i; �i+1; : : : ; �j with j � i be spe
ial mat
h-ings of v and suppose that �i�1 and �j+1 are not spe
ial mat
hings of v. Thentheir 
onne
ted 
omponent in the 
ommutation graph is a subgraph of



146 Chapter 6. Spe
ial mat
hings of S(n) form a Coxeter groupli�1 �i�i+1...�j rj+1
d ddddd dDually, if �i; : : : ; �j are spe
ial mat
hings of v and �i�1 and �j+1 are not, thentheir 
onne
ted 
omponent in the 
ommutation graph is a subgraph ofri�1�i�i+1 ... �jlj+1

dddddddProof. We only prove the �rst statement.Observe that if �k, �k+1 and rk+1 are spe
ial mat
hings of v for some k thenrk+1 = �k+1. In fa
t, if k; k+1 2 DL(v) then, by Lemma 0.3.5, v = sksk+1skv0with l(v) = l(v0) + 3. But then, if rk+1 is a spe
ial mat
hing of v, we havesk+2 � v0; otherwise sksk+1sk+2 � v, whi
h is not possible by Corollary 0.7.4.Hen
e rk+1 = �k+1. Similarly, if �k ; �k+1 and lk are spe
ial mat
hings of v forsome k then lk = �k.Now we look at the possible neighbors of �i in the 
ommutation graph. If li�1is not a spe
ial mat
hing there is nothing to prove, be
ause �i is adja
ent onlyto �i+1. If li�1 is a spe
ial mat
hing, ri�2 and ri 
annot be spe
ial mat
hingsof v by Theorem 6.1.7, and �i�2 
annot be a spe
ial mat
hing of v by 2. ofTheorem 6.1.8. The analysis of the 
ommutation graph around �j is similarand it is left to the reader. �



6.1 The 
ommutation graph 147Example. Let, for 3 � i < j � n� 3 , v = si�2sj+2w where w is the longestelement in the paraboli
 subgroup W[i;j+1℄. Thenli�1 �i�i+1...�j rj+1
d ddddd dis a
tually a 
onne
ted 
omponent in the 
ommutation graph of the spe
ialmat
hings of v.Our next goal is to understand if there is any further relation among thespe
ial mat
hings of a permutation v, other than the 
ommutation relations.In other words we want to understand if the group generated by the spe
ialmat
hings is the Coxeter group whose Coxeter diagram is our 
ommutationgraph or a proper quotient of it. We will see that there are no further relations.Lemma 6.1.10 Let i < j. Suppose thatli�1 �i�i+1...�j
d dddddis a subgraph of a 
onne
ted 
omponent of the 
ommutation graph. Then theother 
onne
ted 
omponents having at least a spe
ial mat
hing indexed in [i�1; j℄do not have verti
es with index smaller than i� 1.Clearly, dual statements hold if we 
hange the subgraph with one of the following
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ial mat
hings of S(n) form a Coxeter group�i�i+1...�j rj+1
ddddd d

ri�1�i�i+1 ... �j
dddddd

�i�i+1 ... �jlj+1
ddddddProof. Let us 
he
k all other possible spe
ial mat
hings indexed by i� 1. Bythe proof of Theorem 6.1.9, if �i�1 is a spe
ial mat
hing, then �i�1 = li�1. LetJ = [i� 1℄ and de
ompose v = vJ Jv. Sin
e li�1 is a spe
ial mat
hing, we havethat si�1 2 DR(vJ ). We 
an assume that si�2 � vJ , otherwise we 
annot havespe
ial mat
higs indexed by i � 2 and the result would be trivial. If ri�1 isa spe
ial mat
hing then si�2si�1si � v by Corollary 0.7.4. Hen
e ne
essarilysi � Jv. But this is in 
ontradi
tion with the fa
t that �i is a spe
ial mat
hingand hen
e ri�1 is not a spe
ial mat
hing. So the only other possible spe
ialmat
hing indexed by i� 1 is �i�1.Note that the possible neighbours of �i�1 indexed by i � 2 are �i�2 and ri�2.But �i�2 and ri�2 are not spe
ial mat
hings of v be
ause, otherwise, they wouldbe in the same 
onne
ted 
omponent of li�1 and this is in 
ontradi
tion withTheorem 6.1.9. �Lemma 6.1.11 Let i < j. If�i �i+1 �j� � �d d d d dis a 
onne
ted 
omponent of the 
ommutation graph and C is another 
omponentwith a spe
ial mat
hing indexed by i, then this spe
ial mat
hing is of type � or rand if it is of type r, C does not 
ontain any spe
ial mat
hing with index smallerthan i.Clearly, a dual statement holds.Proof. We already know that if li is a spe
ial mat
hing, then it is ne
essarilyequal to �i. If �i is a spe
ial mat
hing there is nothing to prove. So suppose



6.1 The 
ommutation graph 149that ri is a spe
ial mat
hing. If li�1 or �i�1 are spe
ial mat
hings, then theywould be in the same 
onne
ted 
omponent of �i, whi
h is a 
ontradi
tion; soin the 
onne
ted 
omponent of ri there are no spe
ial mat
hings with indexsmaller than i. �We introdu
e an equivalen
e relation on the set of 
onne
ted 
omponents ofthe 
ommutation graph. We say that two 
onne
ted 
omponents C and C 0 arein the same isotypi
al 
omponent if there exists a sequen
e C = C0; C1; : : : ; Ct =C 0 of 
onne
ted 
omponents su
h that, for all i 2 [t℄, Ci�1 and Ci 
ontain atleast one spe
ial mat
hing with the same index. Then Lemmas 6.1.10 and 6.1.11tells us that spe
ial mat
hings of type l and r have external indi
es in isotypi
al
omponents.Corollary 6.1.12 Let I be an isotypi
al 
omponent of the 
ommutation graphand suppose that all the spe
ial mat
hings in I are indexed in [i; j℄. Then allthe spe
ial mat
hings of I indexed in [i+ 1; j � 1℄ are of type � or �.Proof. It follows dire
tly from Lemma 6.1.10 and 6.1.11. �This is an example of how an isotypi
al 
omponent looks like.d ddddddd
�7�8�9�10

dddddd

l2 �3�4�5�7�8�9�10

�4�5�6�7
�9l10



150 Chapter 6. Spe
ial mat
hings of S(n) form a Coxeter group6.2 The Coxeter group 
WvGiven v 2 S(n), we de�ne 
Wv to be the group generated by the set Sv of allspe
ial mat
hings of v. In this se
tion, we analyze the stru
ture of the group
Wv . Our goal is to show that the pair (
Wv ; Sv) is again a Coxeter system.Theorem 6.2.1 Let v 2 S(n), Sv be the set of all spe
ial mat
hings of v and
Wv be the group generated by Sv. Then(
Wv ; Sv)is a Coxeter system isomorphi
 to a dire
t produ
t of symmetri
 groups.Proof. Let p be a word in the alphabet of the spe
ial mat
hings of v su
hthat p(u) = u for all u � v (in other words, p is the identity in 
Wv). The resultwill follow if we show that we 
an obtain the empty word from p using onlybraid moves either of the formMNM $ NMN (ifM and N do not 
ommute),or of the form MN $ NM (if M and N do 
ommute), and nil moves of theform MM = ;. Suppose that I is an isotypi
al 
omponent whose set of indi
esis [i; j℄. Then, by Corollary 6.1.12, after 
ommutation of some letters, we maysuppose that p = p1p2p3, where:- p1 is a word in hi; �i+1: : : : ; �j�1; hj with hi equal to li or �i and hj equal torj or �j ;- p2 is a word in ki; �i+1; : : : ; �j�1; kj , with ki equal to ri or �i and kj is equalto lj or �j ;- p3 is a word involving spe
ial mat
hings whi
h are not indexed in [i; j℄.It is 
lear that it is enough to prove our 
laim for p1 and p2, the general re-sult following by indu
tion on the number of isotypi
al 
omponents. These
onditions imply that p1p2 = p�13 . In parti
ular we have p1p2(e) = p�13 (e).But p1p2(e) 2 S(n)[i;j℄ and p�13 (e) 2 S(n)[1;i�1℄[[j+1;n�1℄ and hen
e p1p2(e) =p�13 (e) = e. Moreover, for all sh � v we have p1p2(sh) 2 S(n)[i;j℄[fhg andp�13 (sh) 2 S(n)[i;i�1℄[[j+1;n�1℄[fhg and hen
e p1p2(sh) 2 fe; shg. Sin
e p1p2 isa bije
tion we have p1p2(sh) = sh.We �rstly deal with the 
ase i = j. Let � := p1p2. We 
an 
learly assume that �is a subword of �i�iliri of even length, sin
e �(e) = e. If si�1 � v and si+1 � v,then li = �i and ri = �i, so � is a subword of �i�i. But �i�i(si�1) 6= si�1 and



6.2 The Coxeter group 
Wv 151hen
e � is the empty word. If si�1 � v and si+1 � v, the proof is very similar.If si�1 � v and si+1 � v there is at most one spe
ial mat
hing indexed by i andthe result follows. So we 
an assume that si�1 � v and si+1 � v. If li is a spe-
ial mat
hing, then li(si�1si+1) = si�1sisi+1 whi
h implies, by Corollary 0.7.4,that ri is not a spe
ial mat
hing. But the only subword of �i�ili that a
t as theidentity on both si�1 and si+1 is the empty word and we are done. The otherpossible 
ases are similar and hen
e are left to the reader.So we 
an assume i < j, and we restri
t our attention on P := S(n)[i;j℄ \ [e; v℄.Note that for all u 2 P we have hi(u) = siu, hj(u) = sju, ki(u) = usi, andkj(u) = usj so that we 
an �think� of the h and the k as, respe
tively, � and� (and the 
ommutation relations do not 
hange!). Thus, if si1 � � � sik is a re-du
ed expression of p2(e), we may obtain, using only the 
ommutation relations,p�11 = �i1 � � ��ik and p2 = �ik � � � �i1 , so that p�11 a
ts on P by multiplying onthe left by u := si1 � � � sik (this being a redu
ed expression) and p2 a
ts on Pby multiplying on the right by u. Sin
e p2(sh) = p�11 (sh) for all h 2 [i; j℄ thisimplies that u belongs to the 
enter of S(n)[i;j℄. The result follows sin
e the
enter of S(n)[i;j℄ is trivial. �Example. Let v = (3 1 6 4 2 5) 2 S(6). Then v admits the following redu
edexpression v = s2s3s1s5s4s3. One may 
he
k that the interval [e; v℄ has exa
tly6 distin
t spe
ial mat
hings and these are �2; �5; �1; �3; �4; l3 and r4. Then the
ommutation graph of v is ddd
�2�5�1dd�3�4 ddl3r4and the group
Wv generated by these spe
ial mat
hings is isomorphi
 to S(3)2�S(2)3.Remark Theorem 6.2.1 
annot be generalized to arbitrary Coxeter groups. LetW be the dihedral group generated by a and b with m(a; b) > 4 and 
onsiderw = abab. Then [e; w℄ is a dihedral interval of length 4. Consider the spe
ialmat
hings in Figure 6.3.
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Figure 6.3: dihedral of length 4Call M1 the dashed mat
hing, M2 the dotted mat
hing, M3 the dash-dottedmat
hing and M4 the dash-dot-dotted mat
hing. Then M4M3M2M1 is theidentity as appli
ation from [e; w℄ to itself but it is 
learly not a Coxeter relation.



Chapter 7Kazhdan-Lusztig polynomialsfor arbitrary posetsThis 
hapter is organized around the problem of generalizing the de�nition ofR-polynomials (and hen
e eR-polynomials) and Kazhdan-Lusztig polynomials toarbitrary posets. We �nd that, in a 
ertain 
lass of posets, the 
on
ept of spe-
ial mat
hing leads to an entirely poset theoreti
 de�nition of Kazhdan-Lusztigand R-polynomials. This 
lass of posets, whi
h we 
all diamonds, in
ludes thelower Bruhat intervals and the new de�nitions are obviously 
onsistent with the
lassi
al de�nitions.7.1 Zir
onsBefore introdu
ing the 
lass of diamonds, we introdu
e a more general 
lass ofpartially ordered sets, whi
h we 
all zir
ons. Given a poset P , we say that M isa spe
ial mat
hing of an element w 2 P if M is a spe
ial mat
hing of the Hassediagram of fx 2 P : x � wg. We denote by Sw the set of all spe
ial mat
hingsof w.De�nition 7.1.1 We say that a lo
ally �nite ranked poset Z is a zir
on if Swis non-empty for all w 2 Z, w not minimal.Note that, given a zir
on Z with rank fun
tion �, then jfz 2 Z : z � wgj < 1and l(fz 2 Z : z � wg) � �(w) for all w 2 Z. Figure 7.1 shows an example of azir
on. 153
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Figure 7.1: a zir
onLet us prove some properties of zir
ons.Proposition 7.1.2 Let Z be a zir
on with rank fun
tion �, and let z 2 Z. Thenjfx 2 Z : xC zgj � �(z).Proof. We pro
eed by indu
tion on �(z), the 
ases �(z) = 0; 1 being 
lear.Suppose �(z) � 2. Let M be a spe
ial mat
hing of z. By de�nition of spe-
ial mat
hings, M(x) � M(z) for all x su
h that x C z, x 6= M(z). Thusjfx 2 Z : x C zgj � 1 � jfx 2 Z : x CM(z)gj. But by indu
tion hypothesis,jfx 2 Z : xCM(z)gj � �(M(z)) = �(z)� 1. �Proposition 7.1.3 Let Z be a zir
on, m1 and m2 be two minimal elements inZ. Then there does not exist z 2 Z su
h that z � m1 and z � m2.Proof. By 
ontradi
tion, 
hoose a minimal element z among those greaterthan both m1 and m2. By the de�nition of zir
on, there exists a spe
ialmat
hing M of z. By the Lifting Lemma for spe
ial mat
hings (Lemma 0.7.1),M(z) � m1;m2. But M(z) � z and this is a 
ontradi
tion. �Corollary 7.1.4 Any 
onne
ted zir
on Z is a graded poset.Proof. By Proposition 7.1.3, Z has a 0̂. It remains to prove that, given anyz 2 Z, [0̂; z℄ is pure. But a �nite ranked poset with 0̂ and 1̂ 
learly satis�es theproperties of a pure poset. �Note that any Coxeter group partially ordered by Bruhat order is a 
onne
tedzir
on. In fa
t, any Coxeter group W is ranked by the fun
tion length and, forall w 2W , any right or left des
ent of w gives a spe
ial mat
hing of w.



7.1 Zir
ons 155Let us plung into the study of the lo
al stru
ture of zir
ons.Proposition 7.1.5 Any interval of length 2 of a zir
on Z is a square.Proof. By 
ontradi
tion, let z 2 Z be an element of smallest rank su
h thatit is the top of an interval [x; z℄ whi
h is not a square. Let M be a spe
ialmat
hing of z.Case i) [x; z℄ = fx; y; zgNe
essarily,M(x)Cx otherwiseM would restri
t to [x; z℄ by Lemma 4.2.1, andthis is not possible be
ause j[x; z℄j = 3 is odd. By our indu
tion hypothesis,[M(x); y℄ = fM(x); x; a; yg is a square. By the de�nition of spe
ial mat
hing,a BM(x) implies M(a) B x. Then M(a) 2 [x; z℄ and ne
essarily M(a) = y.Hen
e M(z) 6= y and, by the Lifting Lemma (Lemma0.3.4) and by indu
tionhypothesis, [M(x);M(z)℄ = fM(x); a; b;M(z)g is a square. M(x) C b impliesxCM(b), hen
e M(b) 2 [x:z℄, M(b) 6= y, whi
h is a 
ontradi
tion.Case ii) j[x; z℄j > 4Suppose that a; b; 
 2 [x; z℄ n fx; zg, all distin
t. If M(z) 2 [x; z℄, say M(z) =a, then M(b);M(
) =2 [x; z℄, otherwise by Lemma 4.2.1 M would restri
t to[x; z℄. Hen
e by the de�nition of spe
ial mat
hing, a B M(b);M(
); x andM(x)CM(b);M(
); x. So [M(x); a℄ is not a square and this is a 
ontradi
tion bythe minimality of z. If M(z) =2 [x; z℄, then by the de�nition of spe
ial mat
hingM(z) BM(a);M(b);M(
) and M(x) CM(a);M(b);M(
). So [M(x);M(z)℄ isnot a square and this is again a 
ontradi
tion. �Proposition 7.1.6 Let Z be a 
onne
ted zir
on with rank fun
tion � and letz 2 Z. Then1. if �(z) = 3, the poset [0̂; z℄ is a 2 or 3-krown;2. if �(z) = 4, the poset [0̂; z℄ is isomorphi
 to one of the following posets inS(5):(a) [e; s1s2s3s4℄,(b) [e; s2s1s3s2℄,(
) [e; s1s2s1s3℄,or it is isomorphi
 to one of the two posets in Figure 7.2, or it is a dihedralinterval of length 4.
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Figure 7.2: zir
ons of length 4Proof. Let us prove the �rst statement. Let M 2 Sz. Propositions 7.1.2and 7.1.5 give bounds for the 
ardinality of fx 2 Z : xC zg, namely:2 � jfx 2 Z : xC zgj � 3:Case jfx 2 Z : xC zgj = 3.Let fx 2 Z : x C zg = fa1; a2; a3g, and M(z) = a1. By the de�nitionof spe
ial mat
hings, M(a2) C a1; a2, M(a3) C a1; a3. By Proposition 7.1.5,[0̂; a2℄ is a square, and ne
essarily [0̂; a2℄ = f0̂;M(0̂);M(a2); a2g. By the def-inition of spe
ial mat
hing, M(0̂) C a3. Clearly fx 2 [0̂; z℄ : �(x) = 1g =fM(0̂);M(a2);M(a3)g be
ause other elements would not be mat
hable. So[0̂; z℄ is a 3-krown.Case jfx 2 Z : xC zgj = 2. Let fx 2 Z : xC zg = fa1; a2g, andM(z) = a1. Bythe de�nition of spe
ial mat
hings, M(a2)Ca1; a2. By Proposition 7.1.5, [0̂; a2℄is a square, and ne
essarily [0̂; a2℄ = f0̂;M(0̂);M(a2); a2g. Clearly fx 2 [0̂; z℄ :�(x) = 1g = fM(0̂);M(a2)g be
ause other elements would not be mat
hable.It remains to prove that M(0̂)C a1 and this follows from the fa
t that [0̂; a1℄ isa square.Note that [0; z℄ is a 2-krown if M(0) �M(z); it is a 3-krown otherwise.The proof of the se
ond statement is similar to that of the �rst one. LetM 2 Sz. Again Propositions 7.1.2 and 7.1.5 give bounds for the 
ardinality of



7.1 Zir
ons 157fx 2 Z : xC zg. Now we have2 � jfx 2 Z : xC zgj � 4:Case jfx 2 Z : xC zgj = 4.Let fx 2 Z : x C zg = fa1; a2; a3; a4g, and M(z) = a1. By the de�nition ofspe
ial mat
hings, a1BM(a2);M(a3);M(a4), so [0̂; a1℄ is a 3-krown by the �rststatement. Suppose that there is another 3-krown starting from 0̂, say [0̂; a2℄.By the de�nition of spe
ial mat
hings, we have that [0̂; a1℄ \ [0̂; a2℄ is either[0̂;M(a2)℄ or [0̂;M(a2)℄[fyg, where �(y) = 1. In the �rst 
ase, by Lemma 7.1.5,M(0̂) 6� M(a3);M(a4), and so [0̂; a3℄ and [0̂; a4℄ are also 3-krowns. Hen
e (a)holds. In the se
ond 
ase, M(0̂) � M(a3);M(a4), and [0̂; a3℄ and [0̂; a4℄ are2-krowns. Hen
e (b) holds. It remains to prove that is not possible that [0̂; a2℄,[0̂; a3℄ and [0̂; a4℄ are all 2-krowns. This follows by noting that in this 
ase[0̂; a2℄ \ [0̂; a3℄ \ [0̂; a4℄ = f0̂g, and hen
e there are no possibilities for M(0̂).Case jfx 2 Z : xC zgj = 3.Let fx 2 Z : xCzg = fa1; a2; a3g, andM(z) = a1. Using the same te
hni
s, one
an see that (
) holds either if [0̂;M(z)℄ is a 3-krown or if [0̂;M(z)℄ is a 2-krownand [0̂; a2℄ is a 3-krown. Let us analyze the 
ase both [0̂;M(z)℄ and [0̂; a2℄ are2-krowns. By the de�nition of spe
ial mat
hings, M(z) BM(a2);M(a3). Sety C a2, y 6= M(a2). Sin
e [y; z℄ is a square, y C a3. Now fx 2 [0̂; z℄ : �(x) =2g = fM(a2);M(a3); yg be
ause, for another element y0, [y0; z℄ would not be asquare. All this leads to the poset to the left in Figure 7.2.Case jfx 2 Z : xC zgj = 2.Let fx 2 Z : x C zg = fa1; a2g, and M(z) = a1. By the de�nition of spe
ialmat
hings, M(a2)C a1; a2. Choose 
1 CM(a2) su
h that 
1 CM(
1). It existsbe
ause [0̂;M(a2)℄ is a square by Proposition 7.1.5. Also [
1; a2℄ is a square,and ne
essarily [
1; a2℄ = f
1;M(
1);M(a2); a2g. By the fa
t that [M(
1); z℄ isa square, we have thatM(
1)Ca1. Suppose that fM(a2);M(
1)g = fx 2 [0̂; z℄ :�(x) = 2g and set 
2 2 fx 2 [0̂; z℄ : �(x) = 1g. Then M(
2) = 0̂ and fx 2 [0̂; z℄ :�(x) = 1g = f
1; 
2g be
ause other elements would not be mat
hable. Hen
e[0̂; z℄ is dihedral. On the 
ontrary, if there exists y 2 fx 2 [0̂; z℄ : �(x) = 2g,y 6=M(a1);M(
1), we have that yCa1; a2 be
ause [y; z℄ is a square. Then [0̂; a2℄is isomorphi
 to the poset to the right in Figure 7.2 be
ause [0̂; a1℄ and [0̂; a2℄must be 3-krowns by the �rst statement. �



158 Chapter 7. Kazhdan-Lusztig polynomials for arbitrary posets7.2 DiamondsIn this se
tion we prove the main result of this 
hapter. We show that the
on
ept of spe
ial mat
hing leads to an entirely poset theoreti
 de�nition ofR-polynomials, eR-polynomials and Kazhdan-Lusztig polynomials for a 
ertain
lass of posets, whi
h we 
all diamonds.De�nition 7.2.1 We say that a 
onne
ted zir
on D is a diamond if, for allw 2 D and for all (M;N) 2 Sw �Sw, there exists a sequen
e (M0;M1; : : : ;Mk)of spe
ial mat
hings in Sw su
h that:- M0 =M- Mk = N- for all i = 0; 1; : : : ; k � 1,jhMi;Mi+1i(x)j divides jhMi;Mi+1i(w)j (7.1)for all x 2 D, x � w.Let us do a few simple 
onsiderations on diamonds.1. A diamond D does not ne
essarily admit spe
ial mat
hings of all theposet. Not only, there exist �nite diamonds D of odd 
ardinality, su
h asthe following trivial one.
�������� �

2. A diamond does not ne
essarely avoid K3;2, as the following.
�
�� �
������� �BBBBBB �������������������TTTTT QQQQQQQQ



7.2 Diamonds 1593. The hipothesis �
onne
ted� in De�nition 7.2.1 is not essential but 
learlydoes not a�e
t the problem of de�ning Kazhdan-Lusztig polynomials.We now de�ne the eR-polynomials of an arbitrary diamond (throught De�ni-tion 7.2.2), and then we prove that they do not depend on the 
hoosen spe
ialmat
hing. Maybe this is not the most elegant way, but it is 
ertainly the easiest,and mimi
s what we did for the Coxeter groups.De�nition 7.2.2 For all w 2 D, 
hoose a spe
ial mat
hing of [0̂; w℄ and denoteit by Nw. Then, for all u;w 2 D, we indu
tively de�ne the eR-polynomial eRu;w(q)by the following re
ursive property:eRu;w(q) = ( eRNw(u);Nw(w)(q) + �(Nw(u)B u) q eRu;Nw(w)(q); if u � w,0 if u 6� w.The point is to prove that De�nition 7.2.2 is well de�ned, namely that it doesnot depend on the family fNwgw2D of spe
ial mat
hings.Theorem 7.2.3 Let D be a diamond, w 2 D, and M be a spe
ial mat
hing ofw. Then, eRu;w(q) = eRM(u);M(w)(q) + �(M(u)B u) q eRu;M(w)(q); (7.2)for all u � w.Proof. We pro
eed by indu
tion on �(w) the statement being trivial if �(w) = 1.So assume �(w) � 2 and �x u � w. Let fNwgw2D be as in de�nition 7.2.2 and,for brevity, set N := Nw. We may 
learly assume that M and N satisfy (7.1).Denote by u1; u2; : : : ; u2m the elements of hM;Ni(u) indexed so that ui < ujimplies i < j. Let F be the free Z[q℄-module generated by ui, i 2 [2m℄. Wede�ne two module endomorphisms A;B : F ! F by lettingA(ui) :=M(ui) + �(M(ui)B ui) q uiand B(ui) := N(ui) + �(N(ui)B ui) q ui;for all i 2 [2m℄. We 
laim that� � �ABA| {z }m = � � �BAB| {z }m : (7.3)



160 Chapter 7. Kazhdan-Lusztig polynomials for arbitrary posetsIn fa
t, 
onsider the Coxeter system (G;S), where S = fs; t; rg, m(s; t) = mand m(s; r) = m(t; r) = 3 (where s := t if m = 1). Let G0 be the paraboli
subgroupG0 := Gfs;tg,H :=Lx2G0 Z[q℄x and� : F ! H be the unique moduleisomomorphism su
h that �(u1) = e, �(M(ui)) = s�(ui) and �(N(ui)) =t�(ui) for all i 2 [2m℄. Denote xi := �(ui), for all i 2 [2m℄. Then, by ourde�nitions, the endomorphisms �; � : H ! H de�ned by�(x) := sx+ �(sxB x) q xand �(x) := tx+ �(tx B x) q x;for all x 2 G0, satisfy � Æ A = � Æ � and � Æ B = � Æ �. Hen
e to prove(7.3) it is enough to show that : : : ���| {z }m = : : : ���| {z }m . For all g 2 G and allh =Pi2[2m℄ hi(q)xi 2 H we de�ne hg 2 Z[q℄ byhg := Xi2[2m℄hi(q) eRxi;g(q):Note that, if sgCg then hg = (�(h))sg by Corollary 0.5.3, and similarly if tgCgthen hg = (�(h))tg . In parti
ular, if sg C g and tg C g thenhg = (� � ����| {z }k (h)): : : sts| {z }k g = (: : : ���| {z }k (h)): : : tst| {z }k g;for all k � m. If k = m we dedu
e that(: : : ���| {z }m (h))g0 = (: : : ���| {z }m (h))g0 ; (7.4)for all h 2 H and all g0 2 G su
h that sg0 B g0 and tg0 B g0.
Now �x, for the rest of the proof, i 2 [2m℄ and let : : : ���| {z }m (xi) =Pj Pj(q)xjand : : : ���| {z }m (xi) =Pj Qj(q)xj . If we let Sj(q) := Pj(q)�Qj(q) for all j 2 [2m℄,(7.3) will be proved if we show that Sj(q) = 0 for all j 2 [2m℄. We prove this



7.2 Diamonds 161by indu
tion on j. Equation (7.4), for h = xi, implies thatXj2[2m℄Sj(q) eRxj ;g0(q) = 0 (7.5)for all g0 2 G su
h that sg0Bg0 and tg0Bg0. If we set g0 = r in (7.5) we obtainS1(q) eRe;r(q) = 0;for
ing S1(q) = 0. Now let j > 1 and suppose that Sk(q) = 0 for k < j. If weset g0 = rxj (note that s(rxj )B rxj and t(rxj)B rxj sin
e r does not 
ommuteneither with s nor with t) in (7.5) we have thatSj(q) eRxj ;rxj (q) = 0;whi
h implies Sj(q) = 0 and the proof of (7.3) is 
ompleted.For f = Pi fi(q)ui 2 F and w 2 W we let fw := Pi fi(q) eRui;w(q). Notethat in this notation (7.2) 
an be reformulated asuw = (A(u))M(w):By alternated use of the propety de�ning N and our indu
tion hypothesis wehave uw = (B(u))N(w) = (AB(u))MN(w) = (� � �BAB| {z }n (u))� � �NMN| {z }n (w);and similarly (A(u))M(w) = (� � �ABA| {z }n (u))� � �MNM| {z }n (w);where 2n = jhM;Ni(w)j. The thesis follows from (7.3) sin
e m divides n by thede�nition of diamonds and � � �MNM| {z }n (w) = � � �NMN| {z }n (w): �After De�nition 7.2.2, we 
an 
learly de�ne the R-polynomials and theKazhdan-Lusztig polynomials of a diamond by generalizing respe
tively (5) andTheorem 0.5.8. Hen
e, given a diamond D, for all u; v 2 D we let eRu;v(q) bethe unique polynomial satisfyingRu;v(q) = q l(u;v)2 eRu;v(q 12 � q� 12 ):



162 Chapter 7. Kazhdan-Lusztig polynomials for arbitrary posetsThe Kazhdan-Lusztig polynomials of a diamond are de�ned through the follow-ing theorem-de�nition.Theorem 7.2.4 Let D be a diamond. Then there is a unique family of poly-nomials fPu;v(q)gu;v2D � Z[q℄ satisfying the following 
onditions:1. Pu;v(q) = 0 if u 6� v;2. Pu;u(q) = 1;3. deg(Pu;v(q)) � 12 (�(v)� �(u)� 1), if u < v;4. if u � v, then q�(v)��(u) Pu;v �1q� = Xu�z�vRu;z(q)Pz;v(q) :Proof. Straightforward by the restri
tion on deg(Pu;v(q)). �The following result proves what one 
ertainly wishes to be true.Theorem 7.2.5 All Coxeter groups partially ordered by Bruhat order are dia-monds.Proof. Let (W;S) be a Coxeter system and let M and N be two spe
ialmat
hing of an element w 2 W . Suppose �rst that [e; w℄ is not dihedral. If Mand N are both of type � or �, then (M;N) satis�es (7.1). Suppose thatM is oftype �, -multipli
ation for a 
ertain s 2 S-, N is of type �, and ss2s3 � � � sr is aredu
ed expression of w. Call �r the spe
ial mat
hing given by the multipli
ationto the right for sr. Then (M;�r; N) sati�es (7.1). If M and N are not bothmultipli
ation mat
hings, then the assertion follows by Theorem 4.4.7.Now suppose that [e; w℄ is a dihedral interval of length n. The set Sw of thespe
ial mat
hings of w is in bije
tion with the set of all n-sequen
es with entriesin fl; rg, ending with r. In fa
t, for all i = 1; : : : ; n�1, �x fv 2 [e; w℄ : l(v) = ig =fvi;l; vi;rg and send a spe
ial mat
hingM to the sequen
e (xn�1; xn�2; : : : ; x1; r)where xi = l ifM(vi;l)Bvi;l, xi = r ifM(vi;r)Bvi;r . In Figure 7.3, the sequen
easso
iated to the dotted spe
ial mat
hing is (l; r; r; l; l; r).Any two su
h sequen
es give rise to a 
omposition of n, just by looking atthe positions where they 
oin
ide. For example, the sequen
es (l; l; r; r; r; l; r; l; r)and (r; l; l; l; r; l; l; l; r) give rise to the 
omposition (2; 3; 1; 2; 1) of 9 sin
e they
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Figure 7.3: dihedral of length 6have same entries in positions 2, 5, 6, 8, and 
learly 9. Two spe
ial mat
hingssatisfy (7.1) if all the terms in the 
omposition asso
iated to them divide the�rst term. Let us show that there exists a 
hain of sequen
es su
h that- any two 
onse
utively sequen
es satisfy this property;- it starts with x = (xn�1; : : : ; x1; r) = (r; r; : : : ; r);- it ends with y = (yn�1; : : : ; y1; r) = (r; : : : ; r; l; r; : : : ; r); for all possible posi-tions of the unique l.Then the assertion will follow by transitivity and by the symmetry of the prob-lem. If l = yn�1, then the 
omposition asso
iated is (2; 1; : : : ; 1) and we 
an
hoose the trivial 
hain of the two sequen
es. If l = yi 6= yn�1, then we 
an
onsider the sequen
e z = (l; r; r; : : : ; r) and hen
e the 
hain (x; z; y), whi
h hasthe required properties. �The new de�nitions of eR-polinomials, R-polynomials and Kazhdan-Lusztigpolynomials are obviously 
onsistent. In parti
ular, given d in a diamond D,eR0̂;d(q) = q�(d) (7.6)



164 Chapter 7. Kazhdan-Lusztig polynomials for arbitrary posetsif [0̂; d℄ is a Boolean algebra. Moreover, given u; v in a diamond D, u � v, it isstraightforward by Theorem 7.2.3 thateRu;v(q) = ( q; if �(v) � �(u) = 1;q2; if �(v) � �(u) = 2:We say that a poset is n-gon-avoiding if it does not 
ontain a dihedralinterval of length n2 . We say that a poset is lower n-gon-avoiding if it does not
ontain a dihedral interval of length n2 
ontaining a minimal element.Theorem 7.2.6 Let Z be a 
onne
ted zir
on whi
h is both lower 8-gon-avoidingand K3;2-avoiding. Suppose that for all w 2 Z, �(w) � 2, and for all M 2 Swthere exists a spe
ial mat
hing M 0 2 Sw su
h that M(w) 6= M 0(w). Then Z isa diamond.Proof. Note �rst that Corollary 4.1.3, Proposition 4.2.3 and then Lemma 4.2.5hold under these hypotheses.We have to prove that for all w 2 Z and for all (M;N) 2 Sw�Sw there exists asequen
e of spe
ial mat
hings in Sw satisfying the properties of De�nition 7.2.1.We pro
eed by indu
tion on � := �(w), the result being 
lear if � = 1.So, assume � � 2. Firstly, we prove that, if M(w) 6= N(w), the sequen
e(M;N) satis�es (7.1), i.e. jhM;Ni(x)j divides jhM;Ni(w)j for all x � w. So set2n := jhM;Ni(w)j, where n � 2. Let u � w and 2m := jhM;Ni(u)j. We haveto prove that m divides n so we may assume m � 2. By applying Lemma 4.2.5to hM;Ni(w) and hM;Ni(u) we obtain that there exist a lower dihedral interval
ontaining an orbit of 
ardinality n and a lower dihedral interval 
ontaining anorbit of 
ardinality m. Hen
e fm;ng � f2; 3g sin
e Z is lower 8-gon-avoiding.IfM(0̂) 6= N(0̂) then, by Lemma 4.2.5, the two dihedral intervals are 
oin
ident,whi
h for
es m = n.If M(0̂) = N(0̂) then the two dihedral intervals are not ne
essarily 
oin
ident,but 
learly there remains pla
e only for orbits of 
ardinality 4. Hen
em = n = 2.Now suppose that M(w) = N(w). By our hypotheses, there exists a spe
ialmat
hing M 0 2 Sw su
h that M(w) 6= M 0(w). Then by what we have alreadyproved, (M;M 0; N) satis�es (7.1). �Note that not all zir
ons are diamonds. For example, the two zir
ons inFigure 7.2 are not diamonds. Let us 
onsider the poset on the right, the 
on-sideration about the left one being entirely similar.
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Figure 7.4: zir
on but not diamondLet M be the dashed spe
ial mat
hing and N be the dotted spe
ial mat
hing.Then the pair (M;N) 2 Sw�Sw does not satisfy the property of De�nition 7.2.1.The reader 
an easily 
he
k this by noting that jSwj = 6, a spe
ial mat
hingF 2 Sw being uniquely determinated by F (a1) and F (a2), with 2 �3 possibilities.Another prove of that 
an be obtained, for example, by showing thateRM(
);M(w)(q) + �(M(
)B 
) q eR
;M(w)(q)is not equal to eRN(
);N(w)(q) + �(N(
)B 
) q eR
;N(w)(q):Now, eRM(
);M(w)(q) + �(M(
) B 
) q eR
;M(w)(q) = eR0̂;a1 = q3 by (7.6) sin
e[0̂; a1℄ is a 3-krown, namely a Boolean algebra of length 3.On the 
ontrary, by (7.6), eRN(
);N(w)(q)+�(N(
)B
) q eR
;N(w)(q) = eRb3;a1(q)+�(N(
)B 
) q eR
;a1(q) = q + q3.
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